These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 25152043)

  • 1. Comparative analysis of false discovery rate methods in constructing metabolic association networks.
    Koo I; Yao S; Zhang X; Kim S
    J Bioinform Comput Biol; 2014 Aug; 12(4):1450018. PubMed ID: 25152043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bon-EV: an improved multiple testing procedure for controlling false discovery rates.
    Li D; Xie Z; Zand M; Fogg T; Dye T
    BMC Bioinformatics; 2017 Jan; 18(1):1. PubMed ID: 28049414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of dependence in high-dimensional multiple testing problems.
    Kim KI; van de Wiel MA
    BMC Bioinformatics; 2008 Feb; 9():114. PubMed ID: 18298808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Statistical Test for Differential Network Analysis Based on Inference of Gaussian Graphical Model.
    He H; Cao S; Zhang JG; Shen H; Wang YP; Deng HW
    Sci Rep; 2019 Jul; 9(1):10863. PubMed ID: 31350445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Power and type I error rate of false discovery rate approaches in genome-wide association studies.
    Yang Q; Cui J; Chazaro I; Cupples LA; Demissie S
    BMC Genet; 2005 Dec; 6 Suppl 1(Suppl 1):S134. PubMed ID: 16451593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SILGGM: An extensive R package for efficient statistical inference in large-scale gene networks.
    Zhang R; Ren Z; Chen W
    PLoS Comput Biol; 2018 Aug; 14(8):e1006369. PubMed ID: 30102702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constructing Metabolic Association Networks Using High-dimensional Mass Spectrometry Data.
    Koo I; Wei X; Shi X; Zhou Z; Kim S; Zhang X
    Chemometr Intell Lab Syst; 2014 Nov; 138():193-202. PubMed ID: 25414536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of false discovery rate methods in identifying genes with differential expression.
    Qian HR; Huang S
    Genomics; 2005 Oct; 86(4):495-503. PubMed ID: 16054333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SOME STEP-DOWN PROCEDURES CONTROLLING THE FALSE DISCOVERY RATE UNDER DEPENDENCE.
    Ge Y; Sealfon SC; Speed TP
    Stat Sin; 2008; 18(3):881-904. PubMed ID: 19018297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling the false discovery rate with constraints: the Newman-Keuls test revisited.
    Shaffer JP
    Biom J; 2007 Feb; 49(1):136-43. PubMed ID: 17342955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Testing Differential Gene Networks under Nonparanormal Graphical Models with False Discovery Rate Control.
    Zhang Q
    Genes (Basel); 2020 Feb; 11(2):. PubMed ID: 32033447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FastGGM: An Efficient Algorithm for the Inference of Gaussian Graphical Model in Biological Networks.
    Wang T; Ren Z; Ding Y; Fang Z; Sun Z; MacDonald ML; Sweet RA; Wang J; Chen W
    PLoS Comput Biol; 2016 Feb; 12(2):e1004755. PubMed ID: 26872036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological network inference using low order partial correlation.
    Zuo Y; Yu G; Tadesse MG; Ressom HW
    Methods; 2014 Oct; 69(3):266-73. PubMed ID: 25003577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regularized estimation of large-scale gene association networks using graphical Gaussian models.
    Krämer N; Schäfer J; Boulesteix AL
    BMC Bioinformatics; 2009 Nov; 10():384. PubMed ID: 19930695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High throughput screening of co-expressed gene pairs with controlled false discovery rate (FDR) and minimum acceptable strength (MAS).
    Zhu D; Hero AO; Qin ZS; Swaroop A
    J Comput Biol; 2005 Sep; 12(7):1029-45. PubMed ID: 16201920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A note on using permutation-based false discovery rate estimates to compare different analysis methods for microarray data.
    Xie Y; Pan W; Khodursky AB
    Bioinformatics; 2005 Dec; 21(23):4280-8. PubMed ID: 16188930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple testing with discrete data: Proportion of true null hypotheses and two adaptive FDR procedures.
    Chen X; Doerge RW; Heyse JF
    Biom J; 2018 Jul; 60(4):761-779. PubMed ID: 29748972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rank-invariant resampling based estimation of false discovery rate for analysis of small sample microarray data.
    Jain N; Cho H; O'Connell M; Lee JK
    BMC Bioinformatics; 2005 Jul; 6():187. PubMed ID: 16042779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive control of the false discovery rate in voxel-based morphometry.
    Chen S; Wang C; Eberly LE; Caffo BS; Schwartz BS
    Hum Brain Mapp; 2009 Jul; 30(7):2304-11. PubMed ID: 19034901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resampling-based empirical Bayes multiple testing procedures for controlling generalized tail probability and expected value error rates: focus on the false discovery rate and simulation study.
    Dudoit S; Gilbert HN; van der Laan MJ
    Biom J; 2008 Oct; 50(5):716-44. PubMed ID: 18932138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.