These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 25152395)
1. Crystal structure and biochemical characterization of PhaA from Ralstonia eutropha, a polyhydroxyalkanoate-producing bacterium. Kim EJ; Kim KJ Biochem Biophys Res Commun; 2014 Sep; 452(1):124-9. PubMed ID: 25152395 [TBL] [Abstract][Full Text] [Related]
2. Crystal structure and biochemical characterization of beta-keto thiolase B from polyhydroxyalkanoate-producing bacterium Ralstonia eutropha H16. Kim EJ; Son HF; Kim S; Ahn JW; Kim KJ Biochem Biophys Res Commun; 2014 Feb; 444(3):365-9. PubMed ID: 24462871 [TBL] [Abstract][Full Text] [Related]
3. Crystal structure and biochemical properties of ReH16_A1887, the 3-ketoacyl-CoA thiolase from Ralstonia eutropha H16. Kim J; Kim KJ Biochem Biophys Res Commun; 2015 Apr; 459(3):547-52. PubMed ID: 25749345 [TBL] [Abstract][Full Text] [Related]
4. Crystal structure of (R)-3-hydroxybutyryl-CoA dehydrogenase PhaB from Ralstonia eutropha. Kim J; Chang JH; Kim EJ; Kim KJ Biochem Biophys Res Commun; 2014 Jan; 443(3):783-8. PubMed ID: 24211201 [TBL] [Abstract][Full Text] [Related]
5. Cloning, expression, purification, crystallization and X-ray crystallographic analysis of PhaA from Ralstonia eutropha. Kim EJ; Kim KJ Acta Crystallogr F Struct Biol Commun; 2014 Nov; 70(Pt 11):1566-9. PubMed ID: 25372833 [TBL] [Abstract][Full Text] [Related]
6. Crystal structure and biochemical properties of the (S)-3-hydroxybutyryl-CoA dehydrogenase PaaH1 from Ralstonia eutropha. Kim J; Chang JH; Kim KJ Biochem Biophys Res Commun; 2014 May; 448(2):163-8. PubMed ID: 24792376 [TBL] [Abstract][Full Text] [Related]
7. Structural insights into substrate specificity of crotonase from the n-butanol producing bacterium Clostridium acetobutylicum. Kim EJ; Kim YJ; Kim KJ Biochem Biophys Res Commun; 2014 Aug; 451(3):431-5. PubMed ID: 25110148 [TBL] [Abstract][Full Text] [Related]
8. Crystal structure of an acetyl-CoA acetyltransferase from PHB producing bacterium Bacillus cereus ATCC 14579. Hong J; Park W; Seo H; Kim IK; Kim KJ Biochem Biophys Res Commun; 2020 Dec; 533(3):442-448. PubMed ID: 32972748 [TBL] [Abstract][Full Text] [Related]
9. Occurrence and expression of tricarboxylate synthases in Ralstonia eutropha. Ewering C; Brämer CO; Bruland N; Bethke A; Steinbüchel A Appl Microbiol Biotechnol; 2006 Jun; 71(1):80-9. PubMed ID: 16133321 [TBL] [Abstract][Full Text] [Related]
10. A propionate CoA-transferase of Ralstonia eutropha H16 with broad substrate specificity catalyzing the CoA thioester formation of various carboxylic acids. Lindenkamp N; Schürmann M; Steinbüchel A Appl Microbiol Biotechnol; 2013 Sep; 97(17):7699-709. PubMed ID: 23250223 [TBL] [Abstract][Full Text] [Related]
11. Structural characterization of a mitochondrial 3-ketoacyl-CoA (T1)-like thiolase from Mycobacterium smegmatis. Janardan N; Harijan RK; Kiema TR; Wierenga RK; Murthy MR Acta Crystallogr D Biol Crystallogr; 2015 Dec; 71(Pt 12):2479-93. PubMed ID: 26627655 [TBL] [Abstract][Full Text] [Related]
12. Crystallographic analysis of the reaction pathway of Zoogloea ramigera biosynthetic thiolase. Modis Y; Wierenga RK J Mol Biol; 2000 Apr; 297(5):1171-82. PubMed ID: 10764581 [TBL] [Abstract][Full Text] [Related]
13. High resolution crystal structures of human cytosolic thiolase (CT): a comparison of the active sites of human CT, bacterial thiolase, and bacterial KAS I. Kursula P; Sikkilä H; Fukao T; Kondo N; Wierenga RK J Mol Biol; 2005 Mar; 347(1):189-201. PubMed ID: 15733928 [TBL] [Abstract][Full Text] [Related]
14. Roles of multiple acetoacetyl coenzyme A reductases in polyhydroxybutyrate biosynthesis in Ralstonia eutropha H16. Budde CF; Mahan AE; Lu J; Rha C; Sinskey AJ J Bacteriol; 2010 Oct; 192(20):5319-28. PubMed ID: 20729355 [TBL] [Abstract][Full Text] [Related]
15. The 1.8 A crystal structure of the dimeric peroxisomal 3-ketoacyl-CoA thiolase of Saccharomyces cerevisiae: implications for substrate binding and reaction mechanism. Mathieu M; Modis Y; Zeelen JP; Engel CK; Abagyan RA; Ahlberg A; Rasmussen B; Lamzin VS; Kunau WH; Wierenga RK J Mol Biol; 1997 Oct; 273(3):714-28. PubMed ID: 9402066 [TBL] [Abstract][Full Text] [Related]
16. Two NADH-dependent (S)-3-hydroxyacyl-CoA dehydrogenases from polyhydroxyalkanoate-producing Ralstonia eutropha. Segawa M; Wen C; Orita I; Nakamura S; Fukui T J Biosci Bioeng; 2019 Mar; 127(3):294-300. PubMed ID: 30243533 [TBL] [Abstract][Full Text] [Related]
17. Crystal structure of Ralstonia eutropha polyhydroxyalkanoate synthase C-terminal domain and reaction mechanisms. Kim J; Kim YJ; Choi SY; Lee SY; Kim KJ Biotechnol J; 2017 Jan; 12(1):. PubMed ID: 27808482 [TBL] [Abstract][Full Text] [Related]
18. The crystal structure of 8-amino-7-oxononanoate synthase: a bacterial PLP-dependent, acyl-CoA-condensing enzyme. Alexeev D; Alexeeva M; Baxter RL; Campopiano DJ; Webster SP; Sawyer L J Mol Biol; 1998 Nov; 284(2):401-19. PubMed ID: 9813126 [TBL] [Abstract][Full Text] [Related]
19. Polyhydroxyalkanoate (PHA) synthesis by class IV PHA synthases employing Ralstonia eutropha PHB(-)4 as host strain. Hyakutake M; Saito Y; Tomizawa S; Mizuno K; Tsuge T Biosci Biotechnol Biochem; 2011; 75(8):1615-7. PubMed ID: 21821924 [TBL] [Abstract][Full Text] [Related]
20. Molecular mechanism of acetoacetyl-CoA enhanced kinetics for increased bioplastic production from Singh A; Das M; Grover A J Biomol Struct Dyn; 2020 Feb; 38(3):827-840. PubMed ID: 30836854 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]