BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

494 related articles for article (PubMed ID: 2515273)

  • 1. Effects of peripheral and central chemoreflex activation on the isopnoeic rating of breathing in exercising humans.
    Ward SA; Whipp BJ
    J Physiol; 1989 Apr; 411():27-43. PubMed ID: 2515273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous assessment of central and peripheral chemoreflex regulation of muscle sympathetic nerve activity and ventilation in healthy young men.
    Keir DA; Duffin J; Millar PJ; Floras JS
    J Physiol; 2019 Jul; 597(13):3281-3296. PubMed ID: 31087324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ventilatory response to modified rebreathing is unchanged by hyperoxic severity: implications for the hyperoxic hyperventilation paradox.
    Huggard JD; Guluzade NA; Duffin J; Keir DA
    J Appl Physiol (1985); 2023 Dec; 135(6):1446-1456. PubMed ID: 37942527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peripheral chemoreflex drive in moderate-intensity exercise.
    St Croix CM; Cunningham DA; Paterson DH; Kowalchuk JM
    Can J Appl Physiol; 1996 Aug; 21(4):285-300. PubMed ID: 8853470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sex differences in the sympathetic neurocirculatory responses to chemoreflex activation.
    Sayegh ALC; Fan JL; Vianna LC; Dawes M; Paton JFR; Fisher JP
    J Physiol; 2022 Jun; 600(11):2669-2689. PubMed ID: 35482235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of hypoxic duration and posthypoxic inspired O2 concentration on short term potentiation of breathing in humans.
    Dahan A; Berkenbosch A; DeGoede J; van den Elsen M; Olievier I; van Kleef J
    J Physiol; 1995 Nov; 488 ( Pt 3)(Pt 3):803-13. PubMed ID: 8576870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperadditive ventilatory response arising from interaction between the carotid chemoreflex and the muscle mechanoreflex in healthy humans.
    Silva TM; Aranda LC; Paula-Ribeiro M; Oliveira DM; Medeiros WM; Vianna LC; Nery LE; Silva BM
    J Appl Physiol (1985); 2018 Jul; 125(1):215-225. PubMed ID: 29565769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peripheral chemoreflex contribution to ventilatory long-term facilitation induced by acute intermittent hypercapnic hypoxia in males and females.
    Vermeulen TD; Benbaruj J; Brown CV; Shafer BM; Floras JS; Foster GE
    J Physiol; 2020 Oct; 598(20):4713-4730. PubMed ID: 32744340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of the ventilatory response in man to step changes of end-tidal carbon dioxide and of hypoxia during exercise.
    MacFarlane DJ; Cunningham DJ
    J Physiol; 1992 Nov; 457():539-57. PubMed ID: 1297845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in respiratory control after three hours of isocapnic hypoxia in humans.
    Mahamed S; Cunningham DA; Duffin J
    J Physiol; 2003 Feb; 547(Pt 1):271-81. PubMed ID: 12562969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of oxygen on the ventilatory response to carbon dioxide in man.
    Dahan A; DeGoede J; Berkenbosch A; Olievier IC
    J Physiol; 1990 Sep; 428():485-99. PubMed ID: 2121961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ventilatory responses during incremental exercise in men under hyperoxic conditions.
    Miyamoto Y; Niizeki K
    Jpn J Physiol; 1995; 45(1):59-68. PubMed ID: 7650858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Central and peripheral chemoreflexes in humans with treated hypertension.
    Sayegh ALC; Fan JL; Dawes M; Paton JFR; Fisher JP
    J Physiol; 2023 Jun; 601(12):2425-2445. PubMed ID: 37014129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of a subanesthetic concentration of halothane on the ventilatory response to step changes into and out of sustained isocapnic hypoxia in healthy volunteers.
    Dahan A; van den Elsen MJ; Berkenbosch A; DeGoede J; Olievier IC; Burm AG; van Kleef JW
    Anesthesiology; 1994 Oct; 81(4):850-9. PubMed ID: 7943836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of inspired oxygen concentration on the dynamics of the exercise hyperpnoea in man.
    Griffiths TL; Henson LC; Whipp BJ
    J Physiol; 1986 Nov; 380():387-403. PubMed ID: 3612567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spinal cord injury is associated with enhanced peripheral chemoreflex sensitivity.
    Bascom AT; Sankari A; Badr MS
    Physiol Rep; 2016 Sep; 4(17):. PubMed ID: 27597767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The chemoreflex control of breathing and its measurement.
    Duffin J
    Can J Anaesth; 1990 Nov; 37(8):933-42. PubMed ID: 2123750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single breath of CO2 as a clinical test of the peripheral chemoreflex.
    McClean PA; Phillipson EA; Martinez D; Zamel N
    J Appl Physiol (1985); 1988 Jan; 64(1):84-9. PubMed ID: 3128530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of exercise on the development of respiratory depression during sustained isocapnic hypoxia in humans.
    Pandit JJ; Robbins PA
    Respiration; 1997; 64(1):86-95. PubMed ID: 9044482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peripheral chemoreceptor control of exercise hyperpnea in humans.
    Whipp BJ
    Med Sci Sports Exerc; 1994 Mar; 26(3):337-47. PubMed ID: 8183098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.