These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 25152886)

  • 1. A bayesian framework that integrates heterogeneous data for inferring gene regulatory networks.
    Santra T
    Front Bioeng Biotechnol; 2014; 2():13. PubMed ID: 25152886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inferring gene regulatory networks using transcriptional profiles as dynamical attractors.
    Li R; Rozum JC; Quail MM; Qasim MN; Sindi SS; Nobile CJ; Albert R; Hernday AD
    PLoS Comput Biol; 2023 Aug; 19(8):e1010991. PubMed ID: 37607190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SAILoR: Structure-Aware Inference of Logic Rules.
    Pušnik Ž; Mraz M; Zimic N; Moškon M
    PLoS One; 2024; 19(6):e0304102. PubMed ID: 38861487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inference of genetic regulatory networks with regulatory hubs using vector autoregressions and automatic relevance determination with model selections.
    Chen CK
    Stat Appl Genet Mol Biol; 2021 Dec; 20(4-6):121-143. PubMed ID: 34963205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inference of gene networks from gene expression time series using recurrent neural networks and sparse MAP estimation.
    Chen CK
    J Bioinform Comput Biol; 2018 Aug; 16(4):1850009. PubMed ID: 30051742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hybrid framework for reverse engineering of robust Gene Regulatory Networks.
    Jafari M; Ghavami B; Sattari V
    Artif Intell Med; 2017 Jun; 79():15-27. PubMed ID: 28602483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian differential analysis of gene regulatory networks exploiting genetic perturbations.
    Li Y; Liu D; Li T; Zhu Y
    BMC Bioinformatics; 2020 Jan; 21(1):12. PubMed ID: 31918656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PoLoBag: Polynomial Lasso Bagging for signed gene regulatory network inference from expression data.
    Ghosh Roy G; Geard N; Verspoor K; He S
    Bioinformatics; 2021 Jan; 36(21):5187-5193. PubMed ID: 32697830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Network motif-based identification of transcription factor-target gene relationships by integrating multi-source biological data.
    Zhang Y; Xuan J; de los Reyes BG; Clarke R; Ressom HW
    BMC Bioinformatics; 2008 Apr; 9():203. PubMed ID: 18426580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inference of gene regulatory networks from time series by Tsallis entropy.
    Lopes FM; de Oliveira EA; Cesar RM
    BMC Syst Biol; 2011 May; 5():61. PubMed ID: 21545720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing gene regulatory networks inference through hub-based data integration.
    Naseri A; Sharghi M; Hasheminejad SMH
    Comput Biol Chem; 2021 Dec; 95():107589. PubMed ID: 34673384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A sparse and decomposed particle swarm optimization for inferring gene regulatory networks based on fuzzy cognitive maps.
    Liu L; Liu J
    J Bioinform Comput Biol; 2019 Aug; 17(4):1950023. PubMed ID: 31617458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An improved Bayesian network method for reconstructing gene regulatory network based on candidate auto selection.
    Xing L; Guo M; Liu X; Wang C; Wang L; Zhang Y
    BMC Genomics; 2017 Nov; 18(Suppl 9):844. PubMed ID: 29219084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inferring gene regulatory networks by singular value decomposition and gravitation field algorithm.
    Zheng M; Wu JN; Huang YX; Liu GX; Zhou Y; Zhou CG
    PLoS One; 2012; 7(12):e51141. PubMed ID: 23226565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inferring microRNA and transcription factor regulatory networks in heterogeneous data.
    Le TD; Liu L; Liu B; Tsykin A; Goodall GJ; Satou K; Li J
    BMC Bioinformatics; 2013 Mar; 14():92. PubMed ID: 23497388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian Data Fusion of Gene Expression and Histone Modification Profiles for Inference of Gene Regulatory Network.
    Chen H; Maduranga DAK; Mundra PA; Zheng J
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(2):516-525. PubMed ID: 30207963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BGRMI: A method for inferring gene regulatory networks from time-course gene expression data and its application in breast cancer research.
    Iglesias-Martinez LF; Kolch W; Santra T
    Sci Rep; 2016 Nov; 6():37140. PubMed ID: 27876826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust data-driven incorporation of prior knowledge into the inference of dynamic regulatory networks.
    Greenfield A; Hafemeister C; Bonneau R
    Bioinformatics; 2013 Apr; 29(8):1060-7. PubMed ID: 23525069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A canonical correlation analysis-based dynamic bayesian network prior to infer gene regulatory networks from multiple types of biological data.
    Baur B; Bozdag S
    J Comput Biol; 2015 Apr; 22(4):289-99. PubMed ID: 25844668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.