These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
371 related articles for article (PubMed ID: 25153984)
1. Transition-metal-free oxidative α-C-H amination of ketones via a radical mechanism: mild synthesis of α-amino ketones. Jiang Q; Xu B; Zhao A; Jia J; Liu T; Guo C J Org Chem; 2014 Sep; 79(18):8750-6. PubMed ID: 25153984 [TBL] [Abstract][Full Text] [Related]
2. Simple catalytic mechanism for the direct coupling of α-carbonyls with functionalized amines: a one-step synthesis of Plavix. Evans RW; Zbieg JR; Zhu S; Li W; MacMillan DW J Am Chem Soc; 2013 Oct; 135(43):16074-7. PubMed ID: 24107144 [TBL] [Abstract][Full Text] [Related]
3. Coupling of methyl ketones and primary or secondary amines leading to α-ketoamides. Wei W; Shao Y; Hu H; Zhang F; Zhang C; Xu Y; Wan X J Org Chem; 2012 Sep; 77(17):7157-65. PubMed ID: 22873786 [TBL] [Abstract][Full Text] [Related]
4. Metal-free intramolecular oxidative decarboxylative amination of primary α-amino acids with product selectivity. Yan Y; Wang Z Chem Commun (Camb); 2011 Sep; 47(33):9513-5. PubMed ID: 21773607 [TBL] [Abstract][Full Text] [Related]
5. Transition-Metal-Free Oxidative Decarboxylative Cross Coupling of α,β-Unsaturated Carboxylic Acids with Cyclic Ethers under Air Conditions: Mild Synthesis of α-Oxyalkyl Ketones. Ji PY; Liu YF; Xu JW; Luo WP; Liu Q; Guo CC J Org Chem; 2017 Mar; 82(6):2965-2971. PubMed ID: 28226207 [TBL] [Abstract][Full Text] [Related]
6. A metal-free amination of benzoxazoles--the first example of an iodide-catalyzed oxidative amination of heteroarenes. Froehr T; Sindlinger CP; Kloeckner U; Finkbeiner P; Nachtsheim BJ Org Lett; 2011 Jul; 13(14):3754-7. PubMed ID: 21688859 [TBL] [Abstract][Full Text] [Related]
7. One-Pot Synthesis of Primary and Secondary Aliphatic Amines via Mild and Selective sp Ghosh SK; Hu M; Comito RJ Chemistry; 2021 Dec; 27(70):17601-17608. PubMed ID: 34387903 [TBL] [Abstract][Full Text] [Related]
8. Reductive Amination of Aldehydes and Ketones with Sodium Triacetoxyborohydride. Studies on Direct and Indirect Reductive Amination Procedures(1). Abdel-Magid AF; Carson KG; Harris BD; Maryanoff CA; Shah RD J Org Chem; 1996 May; 61(11):3849-3862. PubMed ID: 11667239 [TBL] [Abstract][Full Text] [Related]
9. Electrochemically Oxidative α-C-H Functionalization of Ketones: A Cascade Synthesis of α-Amino Ketones Mediated by NH Liang S; Zeng CC; Tian HY; Sun BG; Luo XG; Ren FZ J Org Chem; 2016 Dec; 81(23):11565-11573. PubMed ID: 27934459 [TBL] [Abstract][Full Text] [Related]
10. Enantioselective organocatalytic reductive amination. Storer RI; Carrera DE; Ni Y; MacMillan DW J Am Chem Soc; 2006 Jan; 128(1):84-6. PubMed ID: 16390133 [TBL] [Abstract][Full Text] [Related]
11. Copper-catalyzed dehydrogenative γ-C(sp Hu R; Chen FJ; Zhang X; Zhang M; Su W Nat Commun; 2019 Aug; 10(1):3681. PubMed ID: 31417081 [TBL] [Abstract][Full Text] [Related]
12. Direct oxidative coupling of enamines and electron-deficient amines: TBAI/TBHP-mediated synthesis of substituted diaminoalkenes under metal-free conditions. Yuan Y; Hou W; Zhang-Negrerie D; Zhao K; Du Y Org Lett; 2014 Oct; 16(20):5410-3. PubMed ID: 25285730 [TBL] [Abstract][Full Text] [Related]
13. An extremely efficient three-component reaction of aldehydes/ketones, amines, and phosphites (Kabachnik-Fields reaction) for the synthesis of alpha-aminophosphonates catalyzed by magnesium perchlorate. Bhagat S; Chakraborti AK J Org Chem; 2007 Feb; 72(4):1263-70. PubMed ID: 17253748 [TBL] [Abstract][Full Text] [Related]
14. Diamination/Oxidative Cross-Coupling/Bicyclization of Anilines and Methyl Ketones: Direct I Zhang J; Wu X; Gao Q; Geng X; Zhao P; Wu YD; Wu A Org Lett; 2017 Jan; 19(2):408-411. PubMed ID: 28051315 [TBL] [Abstract][Full Text] [Related]
15. Metal-free nitroxyl radical-mediated β-C(sp Qian P; Deng Y; Mei H; Han J; Pan Y Chem Commun (Camb); 2017 Mar; 53(20):2958-2961. PubMed ID: 28229143 [TBL] [Abstract][Full Text] [Related]
16. Oxidative Amination of Aldehydes with Amines into α-Amino Ketones. Tian JS; Xu SW; Bi YH; Cao ZZ; Loh TP Org Lett; 2023 Dec; 25(49):8922-8926. PubMed ID: 38057263 [TBL] [Abstract][Full Text] [Related]
17. BippyPhos: a single ligand with unprecedented scope in the Buchwald-Hartwig amination of (hetero)aryl chlorides. Crawford SM; Lavery CB; Stradiotto M Chemistry; 2013 Dec; 19(49):16760-71. PubMed ID: 24281816 [TBL] [Abstract][Full Text] [Related]
18. SmI2 reduced thioesters as synthons of unstable acyl radicals: direct synthesis of potential protease inhibitors via intermolecular radical addition. Blakskaer P; Høj B; Riber D; Skrydstrup T J Am Chem Soc; 2003 Apr; 125(14):4030-1. PubMed ID: 12670207 [TBL] [Abstract][Full Text] [Related]
19. Secondary amine formation from reductive amination of carbonyl compounds promoted by Lewis acid using the InCl3/Et3SiH system. Lee OY; Law KL; Yang D Org Lett; 2009 Aug; 11(15):3302-5. PubMed ID: 19591453 [TBL] [Abstract][Full Text] [Related]
20. Direct use of formamides as amino group sources via C-N bond cleavage: a catalytic oxidative synthesis of α-ketoamides from acetophenones and formamides under metal-free conditions. Zhao Q; Miao T; Zhang X; Zhou W; Wang L Org Biomol Chem; 2013 Mar; 11(11):1867-73. PubMed ID: 23381643 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]