BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 25153997)

  • 1. Plasmonic nanosensors for simultaneous quantification of multiple protein-protein binding affinities.
    Ahijado-Guzmán R; Prasad J; Rosman C; Henkel A; Tome L; Schneider D; Rivas G; Sönnichsen C
    Nano Lett; 2014 Oct; 14(10):5528-32. PubMed ID: 25153997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic Nanosensors for the Determination of Drug Effectiveness on Membrane Receptors.
    Ahijado-Guzmán R; Menten J; Prasad J; Lambertz C; Rivas G; Sönnichsen C
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):218-223. PubMed ID: 27976859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-Enhanced Raman scattering-based detection of the interactions between the essential cell division FtsZ protein and bacterial membrane elements.
    Ahijado-Guzmán R; Gómez-Puertas P; Alvarez-Puebla RA; Rivas G; Liz-Marzán LM
    ACS Nano; 2012 Aug; 6(8):7514-20. PubMed ID: 22823235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single Particle Plasmon Sensors as Label-Free Technique To Monitor MinDE Protein Wave Propagation on Membranes.
    Lambertz C; Martos A; Henkel A; Neiser A; Kliesch TT; Janshoff A; Schwille P; Sönnichsen C
    Nano Lett; 2016 Jun; 16(6):3540-4. PubMed ID: 27172130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stochastic protein interactions monitored by hundreds of single-molecule plasmonic biosensors.
    Beuwer MA; Prins MW; Zijlstra P
    Nano Lett; 2015 May; 15(5):3507-11. PubMed ID: 25833294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-free plasmonic detection of biomolecular binding by a single gold nanorod.
    Nusz GJ; Marinakos SM; Curry AC; Dahlin A; Höök F; Wax A; Chilkoti A
    Anal Chem; 2008 Feb; 80(4):984-9. PubMed ID: 18197636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A solution-based nano-plasmonic sensing technique by using gold nanorods.
    Ho FH; Wu YH; Ujihara M; Imae T
    Analyst; 2012 Jun; 137(11):2545-8. PubMed ID: 22479700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sub-wavelength confinement of the orbital angular momentum of light probed by plasmonic nanorods resonances.
    Carli M; Zilio P; Garoli D; Giorgis V; Romanato F
    Opt Express; 2014 Oct; 22(21):26302-11. PubMed ID: 25401663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Label-free optical biosensor based on localized surface plasmon resonance of immobilized gold nanorods.
    Huang H; Tang C; Zeng Y; Yu X; Liao B; Xia X; Yi P; Chu PK
    Colloids Surf B Biointerfaces; 2009 Jun; 71(1):96-101. PubMed ID: 19211228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-performance biosensing using arrays of plasmonic nanotubes.
    McPhillips J; Murphy A; Jonsson MP; Hendren WR; Atkinson R; Höök F; Zayats AV; Pollard RJ
    ACS Nano; 2010 Apr; 4(4):2210-6. PubMed ID: 20218668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic focusing reduces ensemble linewidth of silver-coated gold nanorods.
    Becker J; Zins I; Jakab A; Khalavka Y; Schubert O; Sönnichsen C
    Nano Lett; 2008 Jun; 8(6):1719-23. PubMed ID: 18454558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitive and Simple Detection of Glucose Based on Single Plasmonic Nanorod.
    Xu G; Zhu Y; Pang J
    Anal Sci; 2017; 33(2):223-227. PubMed ID: 28190844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio.
    Fang Y; Chang WS; Willingham B; Swanglap P; Dominguez-Medina S; Link S
    ACS Nano; 2012 Aug; 6(8):7177-84. PubMed ID: 22830934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ organization of gold nanorods on mixed self-assembled-monolayer substrates.
    Zareie MH; Xu X; Cortie MB
    Small; 2007 Jan; 3(1):139-45. PubMed ID: 17294485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein-membrane interaction probed by single plasmonic nanoparticles.
    Baciu CL; Becker J; Janshoff A; Sönnichsen C
    Nano Lett; 2008 Jun; 8(6):1724-8. PubMed ID: 18459744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ plasmonic counter for polymerization of chains of gold nanorods in solution.
    Liu K; Ahmed A; Chung S; Sugikawa K; Wu G; Nie Z; Gordon R; Kumacheva E
    ACS Nano; 2013 Jul; 7(7):5901-10. PubMed ID: 23786318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioplasmonic calligraphy for multiplexed label-free biodetection.
    Tian L; Tadepalli S; Park SH; Liu KK; Morrissey JJ; Kharasch ED; Naik RR; Singamaneni S
    Biosens Bioelectron; 2014 Sep; 59():208-15. PubMed ID: 24727607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods.
    Mayer KM; Lee S; Liao H; Rostro BC; Fuentes A; Scully PT; Nehl CL; Hafner JH
    ACS Nano; 2008 Apr; 2(4):687-92. PubMed ID: 19206599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticle enhanced surface plasmon resonance biosensing: application of gold nanorods.
    Law WC; Yong KT; Baev A; Hu R; Prasad PN
    Opt Express; 2009 Oct; 17(21):19041-6. PubMed ID: 20372639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanostructure shape effects on response of plasmonic aptamer sensors.
    Balamurugan S; Mayer KM; Lee S; Soper SA; Hafner JH; Spivak DA
    J Mol Recognit; 2013 Sep; 26(9):402-7. PubMed ID: 23836467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.