These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 25154561)

  • 1. Kinase Substrate Sensor (KISS), a mammalian in situ protein interaction sensor.
    Lievens S; Gerlo S; Lemmens I; De Clercq DJ; Risseeuw MD; Vanderroost N; De Smet AS; Ruyssinck E; Chevet E; Van Calenbergh S; Tavernier J
    Mol Cell Proteomics; 2014 Dec; 13(12):3332-42. PubMed ID: 25154561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. KISS: A Mammalian Two-Hybrid Method for In Situ Analysis of Protein-Protein Interactions.
    Masschaele D; Gerlo S; Lemmens I; Lievens S; Tavernier J
    Methods Mol Biol; 2018; 1794():269-278. PubMed ID: 29855964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. β-Arrestin regulation of myosin light chain phosphorylation promotes AT1aR-mediated cell contraction and migration.
    Simard E; Kovacs JJ; Miller WE; Kim J; Grandbois M; Lefkowitz RJ
    PLoS One; 2013; 8(11):e80532. PubMed ID: 24255721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Demonstration of angiotensin II-induced Ras activation in the trans-Golgi network and endoplasmic reticulum using bioluminescence resonance energy transfer-based biosensors.
    Balla A; Erdélyi LS; Soltész-Katona E; Balla T; Várnai P; Hunyady L
    J Biol Chem; 2011 Feb; 286(7):5319-27. PubMed ID: 21062747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Receptor sequestration in response to β-arrestin-2 phosphorylation by ERK1/2 governs steady-state levels of GPCR cell-surface expression.
    Paradis JS; Ly S; Blondel-Tepaz É; Galan JA; Beautrait A; Scott MG; Enslen H; Marullo S; Roux PP; Bouvier M
    Proc Natl Acad Sci U S A; 2015 Sep; 112(37):E5160-8. PubMed ID: 26324936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemistry: Protein interactions in situ.
    de Souza N
    Nat Methods; 2014 Nov; 11(11):1093. PubMed ID: 25551125
    [No Abstract]   [Full Text] [Related]  

  • 7. Allosteric modulation of β-arrestin-biased angiotensin II type 1 receptor signaling by membrane stretch.
    Tang W; Strachan RT; Lefkowitz RJ; Rockman HA
    J Biol Chem; 2014 Oct; 289(41):28271-83. PubMed ID: 25170081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arrestin-dependent angiotensin AT1 receptor signaling regulates Akt and mTor-mediated protein synthesis.
    Kendall RT; Lee MH; Pleasant DL; Robinson K; Kuppuswamy D; McDermott PJ; Luttrell LM
    J Biol Chem; 2014 Sep; 289(38):26155-26166. PubMed ID: 25081544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stable interaction between beta-arrestin 2 and angiotensin type 1A receptor is required for beta-arrestin 2-mediated activation of extracellular signal-regulated kinases 1 and 2.
    Wei H; Ahn S; Barnes WG; Lefkowitz RJ
    J Biol Chem; 2004 Nov; 279(46):48255-61. PubMed ID: 15355986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. G-protein-coupled receptor (GPCR) kinase phosphorylation and beta-arrestin recruitment regulate the constitutive signaling activity of the human cytomegalovirus US28 GPCR.
    Miller WE; Houtz DA; Nelson CD; Kolattukudy PE; Lefkowitz RJ
    J Biol Chem; 2003 Jun; 278(24):21663-71. PubMed ID: 12668664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. G-protein-coupled receptor kinase specificity for beta-arrestin recruitment to the beta2-adrenergic receptor revealed by fluorescence resonance energy transfer.
    Violin JD; Ren XR; Lefkowitz RJ
    J Biol Chem; 2006 Jul; 281(29):20577-88. PubMed ID: 16687412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The beta-arrestin pathway-selective type 1A angiotensin receptor (AT1A) agonist [Sar1,Ile4,Ile8]angiotensin II regulates a robust G protein-independent signaling network.
    Kendall RT; Strungs EG; Rachidi SM; Lee MH; El-Shewy HM; Luttrell DK; Janech MG; Luttrell LM
    J Biol Chem; 2011 Jun; 286(22):19880-91. PubMed ID: 21502318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beta-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3.
    McDonald PH; Chow CW; Miller WE; Laporte SA; Field ME; Lin FT; Davis RJ; Lefkowitz RJ
    Science; 2000 Nov; 290(5496):1574-7. PubMed ID: 11090355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid dephosphorylation of G protein-coupled receptors by protein phosphatase 1β is required for termination of β-arrestin-dependent signaling.
    Pöll F; Doll C; Schulz S
    J Biol Chem; 2011 Sep; 286(38):32931-6. PubMed ID: 21795688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct phosphorylation sites on the β(2)-adrenergic receptor establish a barcode that encodes differential functions of β-arrestin.
    Nobles KN; Xiao K; Ahn S; Shukla AK; Lam CM; Rajagopal S; Strachan RT; Huang TY; Bressler EA; Hara MR; Shenoy SK; Gygi SP; Lefkowitz RJ
    Sci Signal; 2011 Aug; 4(185):ra51. PubMed ID: 21868357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. β-Arrestin Recruitment and Biased Agonism at Free Fatty Acid Receptor 1.
    Mancini AD; Bertrand G; Vivot K; Carpentier É; Tremblay C; Ghislain J; Bouvier M; Poitout V
    J Biol Chem; 2015 Aug; 290(34):21131-21140. PubMed ID: 26157145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Independent beta-arrestin2 and Gq/protein kinase Czeta pathways for ERK stimulated by angiotensin type 1A receptors in vascular smooth muscle cells converge on transactivation of the epidermal growth factor receptor.
    Kim J; Ahn S; Rajagopal K; Lefkowitz RJ
    J Biol Chem; 2009 May; 284(18):11953-62. PubMed ID: 19254952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The GST-BHMT assay reveals a distinct mechanism underlying proteasome inhibition-induced macroautophagy in mammalian cells.
    Rui YN; Xu Z; Chen Z; Zhang S
    Autophagy; 2015; 11(5):812-32. PubMed ID: 25984893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global phosphorylation analysis of beta-arrestin-mediated signaling downstream of a seven transmembrane receptor (7TMR).
    Xiao K; Sun J; Kim J; Rajagopal S; Zhai B; Villén J; Haas W; Kovacs JJ; Shukla AK; Hara MR; Hernandez M; Lachmann A; Zhao S; Lin Y; Cheng Y; Mizuno K; Ma'ayan A; Gygi SP; Lefkowitz RJ
    Proc Natl Acad Sci U S A; 2010 Aug; 107(34):15299-304. PubMed ID: 20686112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of temporal patterns of GPCR-β-arrestin interactions using split luciferase-fragment complementation.
    Hattori M; Tanaka M; Takakura H; Aoki K; Miura K; Anzai T; Ozawa T
    Mol Biosyst; 2013 May; 9(5):957-64. PubMed ID: 23302795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.