These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 25155181)

  • 1. R/G/B/natural white light thin colloidal quantum dot-based light-emitting devices.
    Bae WK; Lim J; Lee D; Park M; Lee H; Kwak J; Char K; Lee C; Lee S
    Adv Mater; 2014 Oct; 26(37):6387-93. PubMed ID: 25155181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure.
    Kwak J; Bae WK; Lee D; Park I; Lim J; Park M; Cho H; Woo H; Yoon DY; Char K; Lee S; Lee C
    Nano Lett; 2012 May; 12(5):2362-6. PubMed ID: 22468609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light-Emitting Diodes for Display Applications.
    Moon H; Lee C; Lee W; Kim J; Chae H
    Adv Mater; 2019 Aug; 31(34):e1804294. PubMed ID: 30650209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All-Inorganic Quantum Dot Light-Emitting Diodes with Suppressed Luminance Quenching Enabled by Chloride Passivated Tungsten Phosphate Hole Transport Layers.
    Cao F; Wu Q; Sui Y; Wang S; Dou Y; Hua W; Kong L; Wang L; Zhang J; Jiang T; Yang X
    Small; 2021 May; 17(19):e2100030. PubMed ID: 33783126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colloidal Quantum Dot Light-Emitting Diodes Employing Phosphorescent Small Organic Molecules as Efficient Exciton Harvesters.
    Mutlugun E; Guzelturk B; Abiyasa AP; Gao Y; Sun XW; Demir HV
    J Phys Chem Lett; 2014 Aug; 5(16):2802-7. PubMed ID: 26278082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand-Asymmetric Janus Quantum Dots for Efficient Blue-Quantum Dot Light-Emitting Diodes.
    Cho I; Jung H; Jeong BG; Hahm D; Chang JH; Lee T; Char K; Lee DC; Lim J; Lee C; Cho J; Bae WK
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22453-22459. PubMed ID: 29877687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient Dynamics of Charges and Excitons in Quantum Dot Light-Emitting Diodes.
    Kim J; Hahm D; Bae WK; Lee H; Kwak J
    Small; 2022 Jul; 18(29):e2202290. PubMed ID: 35754301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Performance, Solution-Processed, and Insulating-Layer-Free Light-Emitting Diodes Based on Colloidal Quantum Dots.
    Zhang Z; Ye Y; Pu C; Deng Y; Dai X; Chen X; Chen D; Zheng X; Gao Y; Fang W; Peng X; Jin Y
    Adv Mater; 2018 Jul; 30(28):e1801387. PubMed ID: 29808563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved Efficiency of All-Inorganic Quantum-Dot Light-Emitting Diodes via Interface Engineering.
    Xu Q; Li X; Lin Q; Shen H; Wang H; Du Z
    Front Chem; 2020; 8():265. PubMed ID: 32391315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advances and Challenges of Colloidal Quantum Dot Light-Emitting Diodes for Display Applications.
    Kim J; Roh J; Park M; Lee C
    Adv Mater; 2024 May; 36(20):e2212220. PubMed ID: 36853911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots.
    Lim J; Park M; Bae WK; Lee D; Lee S; Lee C; Char K
    ACS Nano; 2013 Oct; 7(10):9019-26. PubMed ID: 24063589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of Alternating-Current Operation on All-Inorganic Quantum Dot Light-Emitting Diodes.
    Lee HJ; Park JS; Rhee S; Park JW; Seok HJ; Jung D; Lim J; Shin D; Im S; Min SJ; Park YS; Kim HK; Bae WK; Hahm D
    ACS Appl Mater Interfaces; 2024 Jul; ():. PubMed ID: 39024473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes.
    Shen H; Cao W; Shewmon NT; Yang C; Li LS; Xue J
    Nano Lett; 2015 Feb; 15(2):1211-6. PubMed ID: 25580801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ investigation of energy transfer in hybrid organic/colloidal quantum dot light-emitting diodes via magneto-electroluminescence.
    Chen L; Chen Q; Lei Y; Jia W; Yuan D; Xiong Z
    Phys Chem Chem Phys; 2016 Aug; 18(32):22373-8. PubMed ID: 27461412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TCNQ Interlayers for Colloidal Quantum Dot Light-Emitting Diodes.
    Koh WK; Shin T; Jung C; Cho DK
    Chemphyschem; 2016 Apr; 17(8):1095-7. PubMed ID: 26853901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. All-Quantum-Dot Infrared Light-Emitting Diodes.
    Yang Z; Voznyy O; Liu M; Yuan M; Ip AH; Ahmed OS; Levina L; Kinge S; Hoogland S; Sargent EH
    ACS Nano; 2015 Dec; 9(12):12327-33. PubMed ID: 26575976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colloidal quantum dot light-emitting devices.
    Wood V; Bulović V
    Nano Rev; 2010; 1():. PubMed ID: 22110863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer.
    Zhao J; Bardecker JA; Munro AM; Liu MS; Niu Y; Ding IK; Luo J; Chen B; Jen AK; Ginger DS
    Nano Lett; 2006 Mar; 6(3):463-7. PubMed ID: 16522043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soft contact transplanted nanocrystal quantum dots for light-emitting diodes: effect of surface energy on device performance.
    Cho H; Kwak J; Lim J; Park M; Lee D; Bae WK; Kim YS; Char K; Lee S; Lee C
    ACS Appl Mater Interfaces; 2015 May; 7(20):10828-33. PubMed ID: 25941770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Does interfacial exciton quenching exist in high-performance quantum dot light-emitting diodes?
    Qu X; Liu W; Li D; Ma J; Gu M; Jia S; Xiang G; Sun XW
    Nanoscale; 2023 Feb; 15(7):3430-3437. PubMed ID: 36727441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.