These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 25155584)

  • 1. Surface polarization matters: enhancing the hydrogen-evolution reaction by shrinking Pt shells in Pt-Pd-graphene stack structures.
    Bai S; Wang C; Deng M; Gong M; Bai Y; Jiang J; Xiong Y
    Angew Chem Int Ed Engl; 2014 Nov; 53(45):12120-4. PubMed ID: 25155584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical and Experimental Understanding of Hydrogen Evolution Reaction Kinetics in Alkaline Electrolytes with Pt-Based Core-Shell Nanocrystals.
    Kim J; Kim H; Lee WJ; Ruqia B; Baik H; Oh HS; Paek SM; Lim HK; Choi CH; Choi SI
    J Am Chem Soc; 2019 Nov; 141(45):18256-18263. PubMed ID: 31621315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene/nano-porous silicon and graphene/bimetallic silicon nanostructures (Pt-M, M: Pd, Ru, Rh), efficient electrocatalysts for the hydrogen evolution reaction.
    Ensafi AA; Jafari-Asl M; Rezaei B
    Phys Chem Chem Phys; 2015 Oct; 17(37):23770-82. PubMed ID: 26304782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designed synthesis of well-defined Pd@Pt core-shell nanoparticles with controlled shell thickness as efficient oxygen reduction electrocatalysts.
    Choi R; Choi SI; Choi CH; Nam KM; Woo SI; Park JT; Han SW
    Chemistry; 2013 Jun; 19(25):8190-8. PubMed ID: 23613263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface Modification on Pd-TiO
    Liu P; Cai Z; You Y; Huang H; Chen S; Gao C; Qi Z; Long R; Zhu J; Song L; Xiong Y
    Chemistry; 2018 Dec; 24(69):18398-18402. PubMed ID: 30102805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High catalytic activity of nitrogen and sulfur co-doped nanoporous graphene in the hydrogen evolution reaction.
    Ito Y; Cong W; Fujita T; Tang Z; Chen M
    Angew Chem Int Ed Engl; 2015 Feb; 54(7):2131-6. PubMed ID: 25470132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of bimetallic Pt-Pd core-shell nanocrystals and their high electrocatalytic activity modulated by Pd shell thickness.
    Li Y; Wang ZW; Chiu CY; Ruan L; Yang W; Yang Y; Palmer RE; Huang Y
    Nanoscale; 2012 Feb; 4(3):845-51. PubMed ID: 22159178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PdCu@Pd Nanocube with Pt-like Activity for Hydrogen Evolution Reaction.
    Li J; Li F; Guo SX; Zhang J; Ma J
    ACS Appl Mater Interfaces; 2017 Mar; 9(9):8151-8160. PubMed ID: 28198611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-pot synthesis and electrocatalytic properties of Pd@Pt core-shell nanocrystals with tailored morphologies.
    Kim Y; Lee YW; Kim M; Han SW
    Chemistry; 2014 Jun; 20(26):7901-5. PubMed ID: 24867229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural evolution of concave trimetallic nanocubes with tunable ultra-thin shells for oxygen reduction reaction.
    Yu S; Zhang L; Zhao ZJ; Gong J
    Nanoscale; 2016 Sep; 8(37):16640-16649. PubMed ID: 27722398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction.
    Deng J; Ren P; Deng D; Bao X
    Angew Chem Int Ed Engl; 2015 Feb; 54(7):2100-4. PubMed ID: 25565666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning Surface Structure and Strain in Pd-Pt Core-Shell Nanocrystals for Enhanced Electrocatalytic Oxygen Reduction.
    Xiong Y; Shan H; Zhou Z; Yan Y; Chen W; Yang Y; Liu Y; Tian H; Wu J; Zhang H; Yang D
    Small; 2017 Feb; 13(7):. PubMed ID: 27860266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal hybrid nanoparticles for catalytic organic and photochemical transformations.
    Song H
    Acc Chem Res; 2015 Mar; 48(3):491-9. PubMed ID: 25730414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A molecular approach to an electrocatalytic hydrogen evolution reaction on single-layer graphene.
    Seo S; Lee K; Min M; Cho Y; Kim M; Lee H
    Nanoscale; 2017 Mar; 9(11):3969-3979. PubMed ID: 28266680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controllably interfacing with metal: a strategy for enhancing CO oxidation on oxide catalysts by surface polarization.
    Bai Y; Zhang W; Zhang Z; Zhou J; Wang X; Wang C; Huang W; Jiang J; Xiong Y
    J Am Chem Soc; 2014 Oct; 136(42):14650-3. PubMed ID: 25296380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled synthesis of Pd-Pt alloy hollow nanostructures with enhanced catalytic activities for oxygen reduction.
    Hong JW; Kang SW; Choi BS; Kim D; Lee SB; Han SW
    ACS Nano; 2012 Mar; 6(3):2410-9. PubMed ID: 22360814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porous C3N4 nanolayers@N-graphene films as catalyst electrodes for highly efficient hydrogen evolution.
    Duan J; Chen S; Jaroniec M; Qiao SZ
    ACS Nano; 2015 Jan; 9(1):931-40. PubMed ID: 25559360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A general and high-yield galvanic displacement approach to Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells and enhanced electrocatalytic performances.
    Kuai L; Geng B; Wang S; Sang Y
    Chemistry; 2012 Jul; 18(30):9423-9. PubMed ID: 22714952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Layer-by-layer evolution of structure, strain, and activity for the oxygen evolution reaction in graphene-templated Pt monolayers.
    Abdelhafiz A; Vitale A; Joiner C; Vogel E; Alamgir FM
    ACS Appl Mater Interfaces; 2015 Mar; 7(11):6180-8. PubMed ID: 25730297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concave Pd-Pt Core-Shell Nanocrystals with Ultrathin Pt Shell Feature and Enhanced Catalytic Performance.
    Zhang Y; Bu L; Jiang K; Guo S; Huang X
    Small; 2016 Feb; 12(6):706-12. PubMed ID: 26708012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.