These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 25156072)

  • 1. A thin-reflector microfluidic resonator for continuous-flow concentration of microorganisms: a new approach to water quality analysis using acoustofluidics.
    Carugo D; Octon T; Messaoudi W; Fisher AL; Carboni M; Harris NR; Hill M; Glynne-Jones P
    Lab Chip; 2014 Oct; 14(19):3830-42. PubMed ID: 25156072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustofluidics 5: Building microfluidic acoustic resonators.
    Lenshof A; Evander M; Laurell T; Nilsson J
    Lab Chip; 2012 Feb; 12(4):684-95. PubMed ID: 22246532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation of 300 and 100 nm Particles in Fabry-Perot Acoustofluidic Resonators.
    Sehgal P; Kirby BJ
    Anal Chem; 2017 Nov; 89(22):12192-12200. PubMed ID: 29039191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective particle and cell capture in a continuous flow using micro-vortex acoustic streaming.
    Collins DJ; Khoo BL; Ma Z; Winkler A; Weser R; Schmidt H; Han J; Ai Y
    Lab Chip; 2017 May; 17(10):1769-1777. PubMed ID: 28394386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustofluidics and whole-blood manipulation in surface acoustic wave counterflow devices.
    Travagliati M; Shilton RJ; Pagliazzi M; Tonazzini I; Beltram F; Cecchini M
    Anal Chem; 2014 Nov; 86(21):10633-8. PubMed ID: 25260018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling for the robust design of layered resonators for ultrasonic particle manipulation.
    Hill M; Townsend RJ; Harris NR
    Ultrasonics; 2008 Nov; 48(6-7):521-8. PubMed ID: 18664398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental investigation of acoustic substrate losses in 1850-MHz thin film BAW resonators.
    Pensala T; Thalhammer R; Dekker J; Kaitila J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Nov; 56(11):2544-52. PubMed ID: 19942540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustofluidics 11: Affinity specific extraction and sample decomplexing using continuous flow acoustophoresis.
    Augustsson P; Laurell T
    Lab Chip; 2012 Apr; 12(10):1742-52. PubMed ID: 22465997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface acoustic wave actuated cell sorting (SAWACS).
    Franke T; Braunmüller S; Schmid L; Wixforth A; Weitz DA
    Lab Chip; 2010 Mar; 10(6):789-94. PubMed ID: 20221569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface acoustic wave induced particle manipulation in a PDMS channel--principle concepts for continuous flow applications.
    Johansson L; Enlund J; Johansson S; Katardjiev I; Yantchev V
    Biomed Microdevices; 2012 Apr; 14(2):279-89. PubMed ID: 22076383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple and inexpensive micromachined aluminum microfluidic devices for acoustic focusing of particles and cells.
    Gautam GP; Burger T; Wilcox A; Cumbo MJ; Graves SW; Piyasena ME
    Anal Bioanal Chem; 2018 May; 410(14):3385-3394. PubMed ID: 29651523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Varying the agglomeration position of particles in a micro-channel using Acoustic Radiation Force beyond the resonance condition.
    Dron O; Aider JL
    Ultrasonics; 2013 Sep; 53(7):1280-7. PubMed ID: 23628114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microfluidic device for continuous capture and concentration of microorganisms from potable water.
    Balasubramanian AK; Soni KA; Beskok A; Pillai SD
    Lab Chip; 2007 Oct; 7(10):1315-21. PubMed ID: 17896016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A surface accumulator of Escherichia coli in water flow.
    Mayeed MS; Al-Mekhnaqi AM; Auner GW; Newaz GM
    Comput Methods Biomech Biomed Engin; 2009 Feb; 12(1):109-12. PubMed ID: 18663613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustofluidic relay: sequential trapping and transporting of microparticles via acoustically excited oscillating bubbles.
    Xie Y; Ahmed D; Lapsley MI; Lu M; Li S; Huang TJ
    J Lab Autom; 2014 Apr; 19(2):137-43. PubMed ID: 23592570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow profiling of a surface-acoustic-wave nanopump.
    Guttenberg Z; Rathgeber A; Keller S; Rädler JO; Wixforth A; Kostur M; Schindler M; Talkner P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056311. PubMed ID: 15600757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustofluidic enzyme-linked immunosorbent assay (ELISA) platform enabled by coupled acoustic streaming.
    Li X; Huffman J; Ranganathan N; He Z; Li P
    Anal Chim Acta; 2019 Nov; 1079():129-138. PubMed ID: 31387703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable bulk acoustic wave resonators based on Ba0.25Sr0.75TiO3 thin films and a HfO2/SiO2 bragg reflector.
    Berge J; Gevorgian S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Dec; 58(12):2768-71. PubMed ID: 23443715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microscale anechoic architecture: acoustic diffusers for ultra low power microparticle separation via traveling surface acoustic waves.
    Behrens J; Langelier S; Rezk AR; Lindner G; Yeo LY; Friend JR
    Lab Chip; 2015 Jan; 15(1):43-6. PubMed ID: 25343424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An acoustofluidic micromixer based on oscillating sidewall sharp-edges.
    Huang PH; Xie Y; Ahmed D; Rufo J; Nama N; Chen Y; Chan CY; Huang TJ
    Lab Chip; 2013 Oct; 13(19):3847-52. PubMed ID: 23896797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.