These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 25156128)
1. Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency. Xie Y; Wang S; Niu S; Lin L; Jing Q; Yang J; Wu Z; Wang ZL Adv Mater; 2014 Oct; 26(38):6599-607. PubMed ID: 25156128 [TBL] [Abstract][Full Text] [Related]
2. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Wang S; Xie Y; Niu S; Lin L; Wang ZL Adv Mater; 2014 May; 26(18):2818-24. PubMed ID: 24449058 [TBL] [Abstract][Full Text] [Related]
3. Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of ∼ 55%. Lin L; Xie Y; Niu S; Wang S; Yang PK; Wang ZL ACS Nano; 2015 Jan; 9(1):922-30. PubMed ID: 25555045 [TBL] [Abstract][Full Text] [Related]
4. A Self-Powered Vector Angle/Displacement Sensor Based on Triboelectric Nanogenerator. Li C; Wang Z; Shu S; Tang W Micromachines (Basel); 2021 Feb; 12(3):. PubMed ID: 33669075 [TBL] [Abstract][Full Text] [Related]
5. Super-Durable and Highly Efficient Electrostatic Induced Nanogenerator Circulation Network Initially Charged by a Triboelectric Nanogenerator for Harvesting Environmental Energy. Rui P; Zhang W; Wang P ACS Nano; 2021 Apr; 15(4):6949-6960. PubMed ID: 33784088 [TBL] [Abstract][Full Text] [Related]
6. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. Wang ZL ACS Nano; 2013 Nov; 7(11):9533-57. PubMed ID: 24079963 [TBL] [Abstract][Full Text] [Related]
7. Triboelectric Nanogenerator Based on the Internal Motion of Powder with a Package Structure Design. Kim D; Oh Y; Hwang BW; Jeon SB; Park SJ; Choi YK ACS Nano; 2016 Jan; 10(1):1017-24. PubMed ID: 26695525 [TBL] [Abstract][Full Text] [Related]
8. Quantitative measurements of vibration amplitude using a contact-mode freestanding triboelectric nanogenerator. Wang S; Niu S; Yang J; Lin L; Wang ZL ACS Nano; 2014 Dec; 8(12):12004-13. PubMed ID: 25386799 [TBL] [Abstract][Full Text] [Related]
9. Case-encapsulated triboelectric nanogenerator for harvesting energy from reciprocating sliding motion. Jing Q; Zhu G; Bai P; Xie Y; Chen J; Han RP; Wang ZL ACS Nano; 2014 Apr; 8(4):3836-42. PubMed ID: 24601567 [TBL] [Abstract][Full Text] [Related]
10. A Shared-Electrode and Nested-Tube Structure Triboelectric Nanogenerator for Motion Energy Harvesting. Tian Z; Shao G; Zhang Q; Geng Y; Chen X Micromachines (Basel); 2019 Sep; 10(10):. PubMed ID: 31569481 [TBL] [Abstract][Full Text] [Related]
11. Freestanding Flag-Type Triboelectric Nanogenerator for Harvesting High-Altitude Wind Energy from Arbitrary Directions. Zhao Z; Pu X; Du C; Li L; Jiang C; Hu W; Wang ZL ACS Nano; 2016 Feb; 10(2):1780-7. PubMed ID: 26738695 [TBL] [Abstract][Full Text] [Related]
12. A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification. Zhu G; Zhou YS; Bai P; Meng XS; Jing Q; Chen J; Wang ZL Adv Mater; 2014 Jun; 26(23):3788-96. PubMed ID: 24692147 [TBL] [Abstract][Full Text] [Related]
13. Nodding Duck Structure Multi-track Directional Freestanding Triboelectric Nanogenerator toward Low-Frequency Ocean Wave Energy Harvesting. Liu L; Yang X; Zhao L; Hong H; Cui H; Duan J; Yang Q; Tang Q ACS Nano; 2021 Jun; 15(6):9412-9421. PubMed ID: 33961385 [TBL] [Abstract][Full Text] [Related]
14. Harvesting water drop energy by a sequential contact-electrification and electrostatic-induction process. Lin ZH; Cheng G; Lee S; Pradel KC; Wang ZL Adv Mater; 2014 Jul; 26(27):4690-6. PubMed ID: 24830874 [TBL] [Abstract][Full Text] [Related]
15. Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Wang J; Wu C; Dai Y; Zhao Z; Wang A; Zhang T; Wang ZL Nat Commun; 2017 Jul; 8(1):88. PubMed ID: 28729530 [TBL] [Abstract][Full Text] [Related]
16. Automatic Mode Transition Enabled Robust Triboelectric Nanogenerators. Chen J; Yang J; Guo H; Li Z; Zheng L; Su Y; Wen Z; Fan X; Wang ZL ACS Nano; 2015 Dec; 9(12):12334-43. PubMed ID: 26529374 [TBL] [Abstract][Full Text] [Related]
17. A Shared-Electrode-Based Hybridized Electromagnetic-Triboelectric Nanogenerator. Quan T; Wang ZL; Yang Y ACS Appl Mater Interfaces; 2016 Aug; 8(30):19573-8. PubMed ID: 27400787 [TBL] [Abstract][Full Text] [Related]
18. Rotating-Sleeve Triboelectric-Electromagnetic Hybrid Nanogenerator for High Efficiency of Harvesting Mechanical Energy. Cao R; Zhou T; Wang B; Yin Y; Yuan Z; Li C; Wang ZL ACS Nano; 2017 Aug; 11(8):8370-8378. PubMed ID: 28783308 [TBL] [Abstract][Full Text] [Related]
19. A sinusoidal alternating output of a triboelectric nanogenerator array with asymmetric-layer-based units. Yu B; Yu H; Huang T; Wang H; Zhang B; Zhu M Nanoscale; 2018 Jul; 10(28):13730-13736. PubMed ID: 29989623 [TBL] [Abstract][Full Text] [Related]
20. Facile Tailoring of Contact Layer Characteristics of the Triboelectric Nanogenerator Based on Portable Imprinting Device. Cho S; Jang S; La M; Yun Y; Yu T; Park SJ; Choi D Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32075240 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]