These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 25156475)

  • 1. Flavin redox bifurcation as a mechanism for controlling the direction of electron flow during extracellular electron transfer.
    Okamoto A; Hashimoto K; Nealson KH
    Angew Chem Int Ed Engl; 2014 Oct; 53(41):10988-91. PubMed ID: 25156475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bound Flavin-Cytochrome Model of Extracellular Electron Transfer in Shewanella oneidensis: Analysis by Free Energy Molecular Dynamics Simulations.
    Hong G; Pachter R
    J Phys Chem B; 2016 Jun; 120(25):5617-24. PubMed ID: 27266856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones.
    Okamoto A; Hashimoto K; Nealson KH; Nakamura R
    Proc Natl Acad Sci U S A; 2013 May; 110(19):7856-61. PubMed ID: 23576738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-range electron conduction of Shewanella biofilms mediated by outer membrane C-type cytochromes.
    Okamoto A; Hashimoto K; Nakamura R
    Bioelectrochemistry; 2012 Jun; 85():61-5. PubMed ID: 22222436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular Electron Shuttling Mediated by Soluble
    Liu T; Luo X; Wu Y; Reinfelder JR; Yuan X; Li X; Chen D; Li F
    Environ Sci Technol; 2020 Sep; 54(17):10577-10587. PubMed ID: 32692167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatially resolved confocal resonant Raman microscopic analysis of anode-grown Geobacter sulfurreducens biofilms.
    Lebedev N; Strycharz-Glaven SM; Tender LM
    Chemphyschem; 2014 Feb; 15(2):320-7. PubMed ID: 24402861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-secreted flavins bound to membrane cytochromes dictate electron transfer reactions to surfaces with diverse charge and pH.
    Okamoto A; Kalathil S; Deng X; Hashimoto K; Nakamura R; Nealson KH
    Sci Rep; 2014 Jul; 4():5628. PubMed ID: 25012073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracellular electron transfer through visible light induced excited-state outer membrane C-type cytochromes of Geobacter sulfurreducens.
    Zhang B; Cheng HY; Wang A
    Bioelectrochemistry; 2021 Apr; 138():107683. PubMed ID: 33421898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shewanella putrefaciens CN32 outer membrane cytochromes MtrC and UndA reduce electron shuttles to produce electricity in microbial fuel cells.
    Wu X; Zou L; Huang Y; Qiao Y; Long ZE; Liu H; Li CM
    Enzyme Microb Technol; 2018 Aug; 115():23-28. PubMed ID: 29859599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron transfer chain reaction of the extracellular flavocytochrome cellobiose dehydrogenase from the basidiomycete Phanerochaete chrysosporium.
    Igarashi K; Yoshida M; Matsumura H; Nakamura N; Ohno H; Samejima M; Nishino T
    FEBS J; 2005 Jun; 272(11):2869-77. PubMed ID: 15943818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracking Electron Uptake from a Cathode into
    Rowe AR; Rajeev P; Jain A; Pirbadian S; Okamoto A; Gralnick JA; El-Naggar MY; Nealson KH
    mBio; 2018 Feb; 9(1):. PubMed ID: 29487241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron acceptor dependence of electron shuttle secretion and extracellular electron transfer by Shewanella oneidensis MR-1.
    Wu C; Cheng YY; Li BB; Li WW; Li DB; Yu HQ
    Bioresour Technol; 2013 May; 136():711-4. PubMed ID: 23558182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cation-limited kinetic model for microbial extracellular electron transport via an outer membrane cytochrome
    Okamoto A; Tokunou Y; Saito J
    Biophys Physicobiol; 2016; 13():71-76. PubMed ID: 27924259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A severe reduction in the cytochrome C content of Geobacter sulfurreducens eliminates its capacity for extracellular electron transfer.
    Estevez-Canales M; Kuzume A; Borjas Z; Füeg M; Lovley D; Wandlowski T; Esteve-Núñez A
    Environ Microbiol Rep; 2015 Apr; 7(2):219-26. PubMed ID: 25348891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing Bidirectional Electron Transfer of Shewanella oneidensis by a Synthetic Flavin Pathway.
    Yang Y; Ding Y; Hu Y; Cao B; Rice SA; Kjelleberg S; Song H
    ACS Synth Biol; 2015 Jul; 4(7):815-23. PubMed ID: 25621739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying Redox Dynamics of c-Type Cytochromes in a Living Cell Suspension of Dissimilatory Metal-reducing Bacteria.
    Luo X; Wu Y; Liu T; Li F; Li X; Chen D; Wang Y
    Anal Sci; 2019 Mar; 35(3):315-321. PubMed ID: 30449834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electromicrobiology.
    Lovley DR
    Annu Rev Microbiol; 2012; 66():391-409. PubMed ID: 22746334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanisms of heme based sensors from sediment organisms capable of extracellular electron transfer.
    Fonseca BM; Paquete CM; Louro RO
    J Inorg Biochem; 2014 Apr; 133():104-9. PubMed ID: 24268904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel bacterial sulfite dehydrogenase that requires three
    Sun W; Xu Y; Liang Y; Yu Q; Gao H
    Appl Environ Microbiol; 2023 Oct; 89(10):e0110823. PubMed ID: 37732808
    [No Abstract]   [Full Text] [Related]  

  • 20. Mtr extracellular electron-transfer pathways in Fe(III)-reducing or Fe(II)-oxidizing bacteria: a genomic perspective.
    Shi L; Rosso KM; Zachara JM; Fredrickson JK
    Biochem Soc Trans; 2012 Dec; 40(6):1261-7. PubMed ID: 23176465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.