BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 25156575)

  • 21. Effects of striatal GABA A-receptor blockade on striatal and cortical activity in monkeys.
    Darbin O; Wichmann T
    J Neurophysiol; 2008 Mar; 99(3):1294-305. PubMed ID: 18216224
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Frequency-Dependent Corticostriatal Disinhibition Resulting from Chronic Dopamine Depletion: Role of Local Striatal cGMP and GABA-AR Signaling.
    Jayasinghe VR; Flores-Barrera E; West AR; Tseng KY
    Cereb Cortex; 2017 Jan; 27(1):625-634. PubMed ID: 26508335
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optogenetic Inhibition of Striatal GABAergic Neuronal Activity Improves Outcomes After Ischemic Brain Injury.
    Jiang L; Li W; Mamtilahun M; Song Y; Ma Y; Qu M; Lu Y; He X; Zheng J; Fu Z; Zhang Z; Yang GY; Wang Y
    Stroke; 2017 Dec; 48(12):3375-3383. PubMed ID: 29146880
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Increase in striatal acetylcholine levels by GABAergic agents: dependence on corticostriatal neurons.
    Scatton B; Bartholini G
    Brain Res; 1980 Oct; 200(1):174-8. PubMed ID: 6774796
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Testing the excitation/inhibition imbalance hypothesis in a mouse model of the autism spectrum disorder: in vivo neurospectroscopy and molecular evidence for regional phenotypes.
    Gonçalves J; Violante IR; Sereno J; Leitão RA; Cai Y; Abrunhosa A; Silva AP; Silva AJ; Castelo-Branco M
    Mol Autism; 2017; 8():47. PubMed ID: 28932379
    [TBL] [Abstract][Full Text] [Related]  

  • 26. tDCS-induced modulation of GABA concentration and dopamine release in the human brain: A combination study of magnetic resonance spectroscopy and positron emission tomography.
    Bunai T; Hirosawa T; Kikuchi M; Fukai M; Yokokura M; Ito S; Takata Y; Terada T; Ouchi Y
    Brain Stimul; 2021; 14(1):154-160. PubMed ID: 33359603
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cortical lesions modulate turnover rates of acetylcholine and gamma-aminobutyric acid.
    Wood PL; Moroni F; Cheney DL; Costa E
    Neurosci Lett; 1979 May; 12(2-3):349-54. PubMed ID: 460733
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distribution of GABAergic neurons in the striatum of amygdala-kindled rats: an immunohistochemical and in situ hybridization study.
    Löscher W; Schirmer M; Freichel C; Gernert M
    Brain Res; 2006 Apr; 1083(1):50-60. PubMed ID: 16545783
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dopaminergic treatment weakens medium spiny neuron collateral inhibition in the parkinsonian striatum.
    Wei W; Ding S; Zhou FM
    J Neurophysiol; 2017 Mar; 117(3):987-999. PubMed ID: 27927785
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Local and remote effects of intra-caudate administration of GABA-related drugs on Met-enkephalin release in the basal ganglia.
    Bourgoin S; Artaud F; Cesselin F; Glowinski J; Hamon M
    Brain Res; 1985 Dec; 361(1-2):361-72. PubMed ID: 3936593
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolic changes detected by proton magnetic resonance spectroscopy in vivo and in vitro in a murin model of Parkinson's disease, the MPTP-intoxicated mouse.
    Chassain C; Bielicki G; Durand E; Lolignier S; Essafi F; Traoré A; Durif F
    J Neurochem; 2008 May; 105(3):874-82. PubMed ID: 18088356
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative study of striatum GABA concentrations and magnetic resonance spectroscopic imaging in Parkinson's disease monkeys.
    Huang L; Ren Y; Zeng Z; Ren H; Li S; He S; He F; Li X
    BMC Neurosci; 2019 Aug; 20(1):42. PubMed ID: 31395015
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acute nigro-striatal blockade alters cortico-striatal encoding: an in vivo electrophysiological study.
    Prosperetti C; Di Giovanni G; Stefani A; Möller JC; Galati S
    Exp Neurol; 2013 Sep; 247():730-6. PubMed ID: 23537952
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Organotypic slice cultures of the rat striatum--I. A histochemical and immunocytochemical study of acetylcholinesterase, choline acetyltransferase, glutamate decarboxylase and GABA.
    Ostergaard K
    Neuroscience; 1993 Apr; 53(3):679-93. PubMed ID: 8487950
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cortical modulation of cholinergic neurons in the striatum.
    Simon JR
    Life Sci; 1982 Oct; 31(14):1501-8. PubMed ID: 7144438
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Brain-derived neurotrophic factor promotes differentiation of striatal GABAergic neurons.
    Mizuno K; Carnahan J; Nawa H
    Dev Biol; 1994 Sep; 165(1):243-56. PubMed ID: 8088442
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cortico-Striatal GABAergic and Glutamatergic Dysregulations in Subjects at Ultra-High Risk for Psychosis Investigated with Proton Magnetic Resonance Spectroscopy.
    de la Fuente-Sandoval C; Reyes-Madrigal F; Mao X; León-Ortiz P; Rodríguez-Mayoral O; Solís-Vivanco R; Favila R; Graff-Guerrero A; Shungu DC
    Int J Neuropsychopharmacol; 2015 Sep; 19(3):pyv105. PubMed ID: 26364273
    [TBL] [Abstract][Full Text] [Related]  

  • 38. GABA levels and measures of intracortical and interhemispheric excitability in healthy young and older adults: an MRS-TMS study.
    Hermans L; Levin O; Maes C; van Ruitenbeek P; Heise KF; Edden RAE; Puts NAJ; Peeters R; King BR; Meesen RLJ; Leunissen I; Swinnen SP; Cuypers K
    Neurobiol Aging; 2018 May; 65():168-177. PubMed ID: 29494863
    [TBL] [Abstract][Full Text] [Related]  

  • 39. GABA and primary motor cortex inhibition in young and older adults: a multimodal reliability study.
    Mooney RA; Cirillo J; Byblow WD
    J Neurophysiol; 2017 Jul; 118(1):425-433. PubMed ID: 28424294
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrophysiology and pharmacology of striatal neuronal dysfunction induced by mitochondrial complex I inhibition.
    Costa C; Belcastro V; Tozzi A; Di Filippo M; Tantucci M; Siliquini S; Autuori A; Picconi B; Spillantini MG; Fedele E; Pittaluga A; Raiteri M; Calabresi P
    J Neurosci; 2008 Aug; 28(32):8040-52. PubMed ID: 18685029
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.