These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

456 related articles for article (PubMed ID: 25156867)

  • 1. Applications of computational modeling in metabolic engineering of yeast.
    Kerkhoven EJ; Lahtvee PJ; Nielsen J
    FEMS Yeast Res; 2015 Feb; 15(1):1-13. PubMed ID: 25156867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From network models to network responses: integration of thermodynamic and kinetic properties of yeast genome-scale metabolic networks.
    Soh KC; Miskovic L; Hatzimanikatis V
    FEMS Yeast Res; 2012 Mar; 12(2):129-43. PubMed ID: 22129227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-Scale
    Ando D; García Martín H
    Methods Mol Biol; 2019; 1859():317-345. PubMed ID: 30421239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deriving metabolic engineering strategies from genome-scale modeling with flux ratio constraints.
    Yen JY; Nazem-Bokaee H; Freedman BG; Athamneh AI; Senger RS
    Biotechnol J; 2013 May; 8(5):581-94. PubMed ID: 23460591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints.
    Sánchez BJ; Zhang C; Nilsson A; Lahtvee PJ; Kerkhoven EJ; Nielsen J
    Mol Syst Biol; 2017 Aug; 13(8):935. PubMed ID: 28779005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous modeling of metabolic networks with gene regulation in yeast and in vivo determination of rate parameters.
    Moisset P; Vaisman D; Cintolesi A; Urrutia J; Rapaport I; Andrews BA; Asenjo JA
    Biotechnol Bioeng; 2012 Sep; 109(9):2325-39. PubMed ID: 22447363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic modeling of cell metabolism for microbial production.
    Costa RS; Hartmann A; Vinga S
    J Biotechnol; 2016 Feb; 219():126-41. PubMed ID: 26724578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-Scale Metabolic Modeling from Yeast to Human Cell Models of Complex Diseases: Latest Advances and Challenges.
    Chen Y; Li G; Nielsen J
    Methods Mol Biol; 2019; 2049():329-345. PubMed ID: 31602620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A systems-level approach for metabolic engineering of yeast cell factories.
    Kim IK; Roldão A; Siewers V; Nielsen J
    FEMS Yeast Res; 2012 Mar; 12(2):228-48. PubMed ID: 22188344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opportunities for yeast metabolic engineering: Lessons from synthetic biology.
    Krivoruchko A; Siewers V; Nielsen J
    Biotechnol J; 2011 Mar; 6(3):262-76. PubMed ID: 21328545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ICON-GEMs: integration of co-expression network in genome-scale metabolic models, shedding light through systems biology.
    Paklao T; Suratanee A; Plaimas K
    BMC Bioinformatics; 2023 Dec; 24(1):492. PubMed ID: 38129786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals.
    Borodina I; Nielsen J
    Biotechnol J; 2014 May; 9(5):609-20. PubMed ID: 24677744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Industrial systems biology and its impact on synthetic biology of yeast cell factories.
    Fletcher E; Krivoruchko A; Nielsen J
    Biotechnol Bioeng; 2016 Jun; 113(6):1164-70. PubMed ID: 26524089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A genome-scale metabolic model of Saccharomyces cerevisiae that integrates expression constraints and reaction thermodynamics.
    Oftadeh O; Salvy P; Masid M; Curvat M; Miskovic L; Hatzimanikatis V
    Nat Commun; 2021 Aug; 12(1):4790. PubMed ID: 34373465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic Evolution of Metabolic Productivity Using Biosensors.
    Williams TC; Pretorius IS; Paulsen IT
    Trends Biotechnol; 2016 May; 34(5):371-381. PubMed ID: 26948437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting metabolic fluxes using gene expression differences as constraints.
    van Berlo RJ; de Ridder D; Daran JM; Daran-Lapujade PA; Teusink B; Reinders MJ
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(1):206-16. PubMed ID: 21071808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites.
    Kim HU; Charusanti P; Lee SY; Weber T
    Nat Prod Rep; 2016 Aug; 33(8):933-41. PubMed ID: 27072921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward metabolic engineering in the context of system biology and synthetic biology: advances and prospects.
    Liu Y; Shin HD; Li J; Liu L
    Appl Microbiol Biotechnol; 2015 Feb; 99(3):1109-18. PubMed ID: 25547833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic fluxes and beyond-systems biology understanding and engineering of microbial metabolism.
    Kohlstedt M; Becker J; Wittmann C
    Appl Microbiol Biotechnol; 2010 Nov; 88(5):1065-75. PubMed ID: 20821203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model-guided identification of gene deletion targets for metabolic engineering in Saccharomyces cerevisiae.
    Brochado AR; Patil KR
    Methods Mol Biol; 2014; 1152():281-94. PubMed ID: 24744040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.