These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 25157078)

  • 41. Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways.
    Shen CR; Liao JC
    Metab Eng; 2008 Nov; 10(6):312-20. PubMed ID: 18775501
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of efflux in enhancing butanol tolerance of bacteria.
    Vasylkivska M; Patakova P
    J Biotechnol; 2020 Aug; 320():17-27. PubMed ID: 32553531
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Detection of Healthcare-Related Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Transmission Events Using Combined Genetic and Phenotypic Epidemiology.
    Voor In 't Holt AF; Wattel AA; Boers SA; Jansen R; Hays JP; Goessens WH; Vos MC
    PLoS One; 2016; 11(7):e0160156. PubMed ID: 27463231
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bacterial phenotype dependency from CO
    Wichmann C; Bocklitz T; Rösch P; Popp J
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Mar; 248():119170. PubMed ID: 33296748
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Detection of bacteria by surface-enhanced Raman spectroscopy.
    Sengupta A; Mujacic M; Davis EJ
    Anal Bioanal Chem; 2006 Nov; 386(5):1379-86. PubMed ID: 16933128
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Alteration of the fatty acid composition of Escherichia coli by growth in the presence of normal alcohols.
    Sullivan KH; Hegeman GD; Cordes EH
    J Bacteriol; 1979 Apr; 138(1):133-8. PubMed ID: 374359
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Metabolome analysis revealed the knockout of glyoxylate shunt as an effective strategy for improvement of 1-butanol production in transgenic Escherichia coli.
    Nitta K; Laviña WA; Pontrelli S; Liao JC; Putri SP; Fukusaki E
    J Biosci Bioeng; 2019 Mar; 127(3):301-308. PubMed ID: 30482596
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Overproduction of free fatty acids in E. coli: implications for biodiesel production.
    Lu X; Vora H; Khosla C
    Metab Eng; 2008 Nov; 10(6):333-9. PubMed ID: 18812230
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Measuring Drug-Induced Changes in Metabolite Populations of Live Bacteria: Real Time Analysis by Raman Spectroscopy.
    Carey PR; Whitmer GR; Yoon MJ; Lombardo MN; Pusztai-Carey M; Heidari-Torkabadi H; Che T
    J Phys Chem B; 2018 Jun; 122(24):6377-6385. PubMed ID: 29792435
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genetic determinants for n-butanol tolerance in evolved Escherichia coli mutants: cross adaptation and antagonistic pleiotropy between n-butanol and other stressors.
    Reyes LH; Abdelaal AS; Kao KC
    Appl Environ Microbiol; 2013 Sep; 79(17):5313-20. PubMed ID: 23811509
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Relationship among growth temperature, membrane fatty acid composition and pressure resistance of Escherichia coli].
    Li ZJ
    Wei Sheng Wu Xue Bao; 2005 Jun; 45(3):426-30. PubMed ID: 15989240
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Leucine zipper-mediated targeting of multi-enzyme cascade reactions to inclusion bodies in Escherichia coli for enhanced production of 1-butanol.
    Han GH; Seong W; Fu Y; Yoon PK; Kim SK; Yeom SJ; Lee DH; Lee SG
    Metab Eng; 2017 Mar; 40():41-49. PubMed ID: 28038953
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High saturated fatty acids proportion in Escherichia coli enhances the activity of ice-nucleation protein from Pantoea ananatis.
    Yu F; Liu X; Tao Y; Zhu K
    FEMS Microbiol Lett; 2013 Aug; 345(2):141-6. PubMed ID: 23763336
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Raman spectroscopy as a tool for tracking cyclopropane fatty acids in genetically engineered Saccharomyces cerevisiae.
    Kochan K; Peng H; Gwee ESH; Izgorodina E; Haritos V; Wood BR
    Analyst; 2019 Jan; 144(3):901-912. PubMed ID: 30207333
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Elucidating and reprogramming Escherichia coli metabolisms for obligate anaerobic n-butanol and isobutanol production.
    Trinh CT
    Appl Microbiol Biotechnol; 2012 Aug; 95(4):1083-94. PubMed ID: 22678028
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Raman and near-infrared spectroscopy for quantification of fat composition in a complex food model system.
    Afseth NK; Segtnan VH; Marquardt BJ; Wold JP
    Appl Spectrosc; 2005 Nov; 59(11):1324-32. PubMed ID: 16316509
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Cloning and expression of key genes of butanol synthetic pathway in Escherichia coli].
    Zhang Y; Zhou P; Wang P; Xie J; Ye Q
    Wei Sheng Wu Xue Bao; 2012 May; 52(5):588-93. PubMed ID: 22803344
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Alcohol tolerance in Escherichia coli.
    Ingram LO; Vreeland NS; Eaton LC
    Pharmacol Biochem Behav; 1980; 13 Suppl 1():191-5. PubMed ID: 7017759
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison of time-gated surface-enhanced raman spectroscopy (TG-SERS) and classical SERS based monitoring of Escherichia coli cultivation samples.
    Kögler M; Paul A; Anane E; Birkholz M; Bunker A; Viitala T; Maiwald M; Junne S; Neubauer P
    Biotechnol Prog; 2018 Nov; 34(6):1533-1542. PubMed ID: 29882305
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of a resonance Raman marker for cytochrome to monitor stress responses in Escherichia coli.
    Mukherjee R; Verma T; Nandi D; Umapathy S
    Anal Bioanal Chem; 2020 Sep; 412(22):5379-5388. PubMed ID: 32548767
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.