BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 25157146)

  • 1. Comparative analysis of pseudogenes across three phyla.
    Sisu C; Pei B; Leng J; Frankish A; Zhang Y; Balasubramanian S; Harte R; Wang D; Rutenberg-Schoenberg M; Clark W; Diekhans M; Rozowsky J; Hubbard T; Harrow J; Gerstein MB
    Proc Natl Acad Sci U S A; 2014 Sep; 111(37):13361-6. PubMed ID: 25157146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Digging for dead genes: an analysis of the characteristics of the pseudogene population in the Caenorhabditis elegans genome.
    Harrison PM; Echols N; Gerstein MB
    Nucleic Acids Res; 2001 Feb; 29(3):818-30. PubMed ID: 11160906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of pseudogenes in the Drosophila melanogaster genome.
    Harrison PM; Milburn D; Zhang Z; Bertone P; Gerstein M
    Nucleic Acids Res; 2003 Feb; 31(3):1033-7. PubMed ID: 12560500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive analysis of amino acid and nucleotide composition in eukaryotic genomes, comparing genes and pseudogenes.
    Echols N; Harrison P; Balasubramanian S; Luscombe NM; Bertone P; Zhang Z; Gerstein M
    Nucleic Acids Res; 2002 Jun; 30(11):2515-23. PubMed ID: 12034841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studying genomes through the aeons: protein families, pseudogenes and proteome evolution.
    Harrison PM; Gerstein M
    J Mol Biol; 2002 May; 318(5):1155-74. PubMed ID: 12083509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of nuclear receptor pseudogenes in vertebrates: how the silent tell their stories.
    Zhang ZD; Cayting P; Weinstock G; Gerstein M
    Mol Biol Evol; 2008 Jan; 25(1):131-43. PubMed ID: 18065488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of complete nuclear receptor sets from the human, Caenorhabditis elegans and Drosophila genomes.
    Maglich JM; Sluder A; Guan X; Shi Y; McKee DD; Carrick K; Kamdar K; Willson TM; Moore JT
    Genome Biol; 2001; 2(8):RESEARCH0029. PubMed ID: 11532213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of Caenorhabditis mitochondrial genome pseudogenes and Caenorhabditis briggsae natural isolates.
    Raboin MJ; Timko AF; Howe DK; FĂ©lix MA; Denver DR
    Mol Biol Evol; 2010 May; 27(5):1087-96. PubMed ID: 20026478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The GENCODE pseudogene resource.
    Pei B; Sisu C; Frankish A; Howald C; Habegger L; Mu XJ; Harte R; Balasubramanian S; Tanzer A; Diekhans M; Reymond A; Hubbard TJ; Harrow J; Gerstein MB
    Genome Biol; 2012 Sep; 13(9):R51. PubMed ID: 22951037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide survey for biologically functional pseudogenes.
    Svensson O; Arvestad L; Lagergren J
    PLoS Comput Biol; 2006 May; 2(5):e46. PubMed ID: 16680195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GENCODE Pseudogenes.
    Sisu C
    Methods Mol Biol; 2021; 2324():67-82. PubMed ID: 34165709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of function and interaction of transcription factors in nematodes: extensive conservation of orthology coupled to rapid sequence evolution.
    Haerty W; Artieri C; Khezri N; Singh RS; Gupta BP
    BMC Genomics; 2008 Aug; 9():399. PubMed ID: 18752680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of processed ribosomal protein pseudogenes in four mammalian genomes.
    Balasubramanian S; Zheng D; Liu YJ; Fang G; Frankish A; Carriero N; Robilotto R; Cayting P; Gerstein M
    Genome Biol; 2009; 10(1):R2. PubMed ID: 19123937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correspondence of D. melanogaster and C. elegans developmental stages revealed by alternative splicing characteristics of conserved exons.
    Gao R; Li JJ
    BMC Genomics; 2017 Mar; 18(1):234. PubMed ID: 28302059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frequent emergence and functional resurrection of processed pseudogenes in the human and mouse genomes.
    Sakai H; Koyanagi KO; Imanishi T; Itoh T; Gojobori T
    Gene; 2007 Mar; 389(2):196-203. PubMed ID: 17196768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive analysis of the pseudogenes of glycolytic enzymes in vertebrates: the anomalously high number of GAPDH pseudogenes highlights a recent burst of retrotrans-positional activity.
    Liu YJ; Zheng D; Balasubramanian S; Carriero N; Khurana E; Robilotto R; Gerstein MB
    BMC Genomics; 2009 Oct; 10():480. PubMed ID: 19835609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional activity and strain-specific history of mouse pseudogenes.
    Sisu C; Muir P; Frankish A; Fiddes I; Diekhans M; Thybert D; Odom DT; Flicek P; Keane TM; Hubbard T; Harrow J; Gerstein M
    Nat Commun; 2020 Jul; 11(1):3695. PubMed ID: 32728065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular fossils in the human genome: identification and analysis of the pseudogenes in chromosomes 21 and 22.
    Harrison PM; Hegyi H; Balasubramanian S; Luscombe NM; Bertone P; Echols N; Johnson T; Gerstein M
    Genome Res; 2002 Feb; 12(2):272-80. PubMed ID: 11827946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PseudoFuN: Deriving functional potentials of pseudogenes from integrative relationships with genes and microRNAs across 32 cancers.
    Johnson TS; Li S; Franz E; Huang Z; Dan Li S; Campbell MJ; Huang K; Zhang Y
    Gigascience; 2019 May; 8(5):. PubMed ID: 31029062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Whole-genome analysis of animal A- and B-type cyclins.
    Nieduszynski CA; Murray J; Carrington M
    Genome Biol; 2002; 3(12):RESEARCH0070. PubMed ID: 12537559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.