These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
27. Characterization of the mode of action of a potent dengue virus capsid inhibitor. Scaturro P; Trist IM; Paul D; Kumar A; Acosta EG; Byrd CM; Jordan R; Brancale A; Bartenschlager R J Virol; 2014 Oct; 88(19):11540-55. PubMed ID: 25056895 [TBL] [Abstract][Full Text] [Related]
28. Virus attachment and entry offer numerous targets for antiviral therapy. Altmeyer R Curr Pharm Des; 2004; 10(30):3701-12. PubMed ID: 15579065 [TBL] [Abstract][Full Text] [Related]
29. A neuron-specific antiviral mechanism prevents lethal flaviviral infection of mosquitoes. Xiao X; Zhang R; Pang X; Liang G; Wang P; Cheng G PLoS Pathog; 2015 Apr; 11(4):e1004848. PubMed ID: 25915054 [TBL] [Abstract][Full Text] [Related]
30. Viral Entry and NS1 as Potential Antiviral Drug Targets. de Silva AM; Rey FA; Young PR; Hilgenfeld R; Vasudevan SG Adv Exp Med Biol; 2018; 1062():107-113. PubMed ID: 29845528 [TBL] [Abstract][Full Text] [Related]
31. Changes in antiviral susceptibility to entry inhibitors and endocytic uptake of dengue-2 virus serially passaged in Vero or C6/36 cells. Acosta EG; Piccini LE; Talarico LB; Castilla V; Damonte EB Virus Res; 2014 May; 184():39-43. PubMed ID: 24583230 [TBL] [Abstract][Full Text] [Related]
32. Broad-spectrum activity against mosquito-borne flaviviruses achieved by a targeted protein degradation mechanism. Liu HY; Li Z; Reindl T; He Z; Qiu X; Golden RP; Donovan KA; Bailey A; Fischer ES; Zhang T; Gray NS; Yang PL Nat Commun; 2024 Jun; 15(1):5179. PubMed ID: 38898037 [TBL] [Abstract][Full Text] [Related]
33. Obatoclax Inhibits Alphavirus Membrane Fusion by Neutralizing the Acidic Environment of Endocytic Compartments. Varghese FS; Rausalu K; Hakanen M; Saul S; Kümmerer BM; Susi P; Merits A; Ahola T Antimicrob Agents Chemother; 2017 Mar; 61(3):. PubMed ID: 27993855 [TBL] [Abstract][Full Text] [Related]
34. Structural optimization and de novo design of dengue virus entry inhibitory peptides. Costin JM; Jenwitheesuk E; Lok SM; Hunsperger E; Conrads KA; Fontaine KA; Rees CR; Rossmann MG; Isern S; Samudrala R; Michael SF PLoS Negl Trop Dis; 2010 Jun; 4(6):e721. PubMed ID: 20582308 [TBL] [Abstract][Full Text] [Related]
35. A scorpion venom peptide Ev37 restricts viral late entry by alkalizing acidic organelles. Li F; Lang Y; Ji Z; Xia Z; Han Y; Cheng Y; Liu G; Sun F; Zhao Y; Gao M; Chen Z; Wu Y; Li W; Cao Z J Biol Chem; 2019 Jan; 294(1):182-194. PubMed ID: 30404919 [TBL] [Abstract][Full Text] [Related]
36. Inhibition of dengue virus entry into target cells using synthetic antiviral peptides. Alhoot MA; Rathinam AK; Wang SM; Manikam R; Sekaran SD Int J Med Sci; 2013; 10(6):719-29. PubMed ID: 23630436 [TBL] [Abstract][Full Text] [Related]
37. Molecular Aspects of the Dengue Virus Infection Process: A Review. Zonetti LFC; Coutinho MC; de Araujo AS Protein Pept Lett; 2018; 25(8):712-719. PubMed ID: 29984641 [TBL] [Abstract][Full Text] [Related]
38. Discovery of novel dengue virus entry inhibitors via a structure-based approach. Leal ES; Aucar MG; Gebhard LG; Iglesias NG; Pascual MJ; Casal JJ; Gamarnik AV; Cavasotto CN; Bollini M Bioorg Med Chem Lett; 2017 Aug; 27(16):3851-3855. PubMed ID: 28668194 [TBL] [Abstract][Full Text] [Related]