These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 25157440)

  • 1. Bone tissue remodeling and development: focus on matrix metalloproteinase functions.
    Paiva KB; Granjeiro JM
    Arch Biochem Biophys; 2014 Nov; 561():74-87. PubMed ID: 25157440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Matrix Metalloproteinases in Bone Resorption, Remodeling, and Repair.
    Paiva KBS; Granjeiro JM
    Prog Mol Biol Transl Sci; 2017; 148():203-303. PubMed ID: 28662823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A regulatory cascade involving retinoic acid, Cbfa1, and matrix metalloproteinases is coupled to the development of a process of perichondrial invasion and osteogenic differentiation during bone formation.
    Jiménez MJ; Balbín M; Alvarez J; Komori T; Bianco P; Holmbeck K; Birkedal-Hansen H; López JM; López-Otín C
    J Cell Biol; 2001 Dec; 155(7):1333-44. PubMed ID: 11748248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localization of matrix metalloproteinases, (MMPs) their tissue inhibitors, and vascular endothelial growth factor (VEGF) in growth plates of children and adolescents indicates a role for MMPs in human postnatal growth and skeletal maturation.
    Haeusler G; Walter I; Helmreich M; Egerbacher M
    Calcif Tissue Int; 2005 May; 76(5):326-35. PubMed ID: 15868281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The expression of metalloproteinase-2, -9, and -14 and of tissue inhibitors-1 and -2 is developmentally modulated during osteogenesis in vitro, the mature osteoblastic phenotype expressing metalloproteinase-14.
    Filanti C; Dickson GR; Di Martino D; Ulivi V; Sanguineti C; Romano P; Palermo C; Manduca P
    J Bone Miner Res; 2000 Nov; 15(11):2154-68. PubMed ID: 11092396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Matrix metalloproteinases and their inhibitors in bone: an overview of regulation and functions.
    Varghese S
    Front Biosci; 2006 Sep; 11():2949-66. PubMed ID: 16720367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteoblast recruitment to sites of bone formation in skeletal development, homeostasis, and regeneration.
    Dirckx N; Van Hul M; Maes C
    Birth Defects Res C Embryo Today; 2013 Sep; 99(3):170-91. PubMed ID: 24078495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Matrix metalloproteinases (MMP) and cathepsin K contribute differently to osteoclastic activities.
    Delaissé JM; Andersen TL; Engsig MT; Henriksen K; Troen T; Blavier L
    Microsc Res Tech; 2003 Aug; 61(6):504-13. PubMed ID: 12879418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Development, physiology, and cell activity of bone].
    de Baat P; Heijboer MP; de Baat C
    Ned Tijdschr Tandheelkd; 2005 Jul; 112(7):258-63. PubMed ID: 16047964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Matrix remodeling during endochondral ossification.
    Ortega N; Behonick DJ; Werb Z
    Trends Cell Biol; 2004 Feb; 14(2):86-93. PubMed ID: 15102440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteoblasts and osteocytes express MMP2 and -8 and TIMP1, -2, and -3 along with extracellular matrix molecules during appositional bone formation.
    Hatori K; Sasano Y; Takahashi I; Kamakura S; Kagayama M; Sasaki K
    Anat Rec A Discov Mol Cell Evol Biol; 2004 Apr; 277(2):262-71. PubMed ID: 15052653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological basis of bone formation, remodeling, and repair-part II: extracellular matrix.
    Allori AC; Sailon AM; Warren SM
    Tissue Eng Part B Rev; 2008 Sep; 14(3):275-83. PubMed ID: 19183102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Matrix metalloproteinases and bone.
    Krane SM; Inada M
    Bone; 2008 Jul; 43(1):7-18. PubMed ID: 18486584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular matrix networks in bone remodeling.
    Alford AI; Kozloff KM; Hankenson KD
    Int J Biochem Cell Biol; 2015 Aug; 65():20-31. PubMed ID: 25997875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vis-à-vis cells and the priming of bone formation.
    Riminucci M; Bradbeer JN; Corsi A; Gentili C; Descalzi F; Cancedda R; Bianco P
    J Bone Miner Res; 1998 Dec; 13(12):1852-61. PubMed ID: 9844103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. What has been learned about the cardiovascular effects of matrix metalloproteinases from mouse models?
    Janssens S; Lijnen HR
    Cardiovasc Res; 2006 Feb; 69(3):585-94. PubMed ID: 16426591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Matrix metalloproteinases: role in skeletal development and growth plate disorders.
    Malemud CJ
    Front Biosci; 2006 May; 11():1702-15. PubMed ID: 16368549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Static and dynamic osteogenesis.
    Marotti G
    Ital J Anat Embryol; 2010; 115(1-2):123-6. PubMed ID: 21073001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Matrix metalloproteinases as master regulators of the vicious cycle of bone metastasis.
    Lynch CC
    Bone; 2011 Jan; 48(1):44-53. PubMed ID: 20601294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biology of metalloproteinases.
    Amălinei C; Căruntu ID; Bălan RA
    Rom J Morphol Embryol; 2007; 48(4):323-34. PubMed ID: 18060181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.