BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 25157442)

  • 21. Domain architecture of pyruvate carboxylase, a biotin-dependent multifunctional enzyme.
    St Maurice M; Reinhardt L; Surinya KH; Attwood PV; Wallace JC; Cleland WW; Rayment I
    Science; 2007 Aug; 317(5841):1076-9. PubMed ID: 17717183
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcarboxylase 5S structures: assembly and catalytic mechanism of a multienzyme complex subunit.
    Hall PR; Zheng R; Antony L; Pusztai-Carey M; Carey PR; Yee VC
    EMBO J; 2004 Sep; 23(18):3621-31. PubMed ID: 15329673
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Allosteric regulation alters carrier domain translocation in pyruvate carboxylase.
    Liu Y; Budelier MM; Stine K; St Maurice M
    Nat Commun; 2018 Apr; 9(1):1384. PubMed ID: 29643369
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phylogenomic analysis of the Giardia intestinalis transcarboxylase reveals multiple instances of domain fusion and fission in the evolution of biotin-dependent enzymes.
    Jordan IK; Henze K; Fedorova ND; Koonin EV; Galperin MY
    J Mol Microbiol Biotechnol; 2003; 5(3):172-89. PubMed ID: 12766347
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The biotin enzyme family: conserved structural motifs and domain rearrangements.
    Jitrapakdee S; Wallace JC
    Curr Protein Pept Sci; 2003 Jun; 4(3):217-29. PubMed ID: 12769720
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A distinct holoenzyme organization for two-subunit pyruvate carboxylase.
    Choi PH; Jo J; Lin YC; Lin MH; Chou CY; Dietrich LEP; Tong L
    Nat Commun; 2016 Oct; 7():12713. PubMed ID: 27708276
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural Analysis of Substrate, Reaction Intermediate, and Product Binding in Haemophilus influenzae Biotin Carboxylase.
    Broussard TC; Pakhomova S; Neau DB; Bonnot R; Waldrop GL
    Biochemistry; 2015 Jun; 54(24):3860-70. PubMed ID: 26020841
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterizing the importance of the biotin carboxylase domain dimer for Staphylococcus aureus pyruvate carboxylase catalysis.
    Yu LP; Chou CY; Choi PH; Tong L
    Biochemistry; 2013 Jan; 52(3):488-96. PubMed ID: 23286247
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystal structure of the carboxyltransferase domain of the oxaloacetate decarboxylase Na+ pump from Vibrio cholerae.
    Studer R; Dahinden P; Wang WW; Auchli Y; Li XD; Dimroth P
    J Mol Biol; 2007 Mar; 367(2):547-57. PubMed ID: 17270211
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Insights into the mechanism and regulation of pyruvate carboxylase by characterisation of a biotin-deficient mutant of the Bacillus thermodenitrificans enzyme.
    Adina-Zada A; Jitrapakdee S; Surinya KH; McIldowie MJ; Piggott MJ; Cleland WW; Wallace JC; Attwood PV
    Int J Biochem Cell Biol; 2008; 40(9):1743-52. PubMed ID: 18272421
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The structure and the mechanism of action of pyruvate carboxylase.
    Attwood PV
    Int J Biochem Cell Biol; 1995 Mar; 27(3):231-49. PubMed ID: 7780827
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Allosteric regulation of the biotin-dependent enzyme pyruvate carboxylase by acetyl-CoA.
    Adina-Zada A; Zeczycki TN; St Maurice M; Jitrapakdee S; Cleland WW; Attwood PV
    Biochem Soc Trans; 2012 Jun; 40(3):567-72. PubMed ID: 22616868
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural evidence for substrate-induced synergism and half-sites reactivity in biotin carboxylase.
    Mochalkin I; Miller JR; Evdokimov A; Lightle S; Yan C; Stover CK; Waldrop GL
    Protein Sci; 2008 Oct; 17(10):1706-18. PubMed ID: 18725455
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adipose pyruvate carboxylase: amino acid sequence and domain structure deduced from cDNA sequencing.
    Zhang J; Xia WL; Brew K; Ahmad F
    Proc Natl Acad Sci U S A; 1993 Mar; 90(5):1766-70. PubMed ID: 8446588
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of the catalytic residues involved in the carboxyl transfer of pyruvate carboxylase.
    Yong-Biao J; Islam MN; Sueda S; Kondo H
    Biochemistry; 2004 May; 43(19):5912-20. PubMed ID: 15134465
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bicarbonate-dependent ATP cleavage catalysed by pyruvate carboxylase in the absence of pyruvate.
    Attwood PV; Graneri BD
    Biochem J; 1992 Nov; 287 ( Pt 3)(Pt 3):1011-7. PubMed ID: 1445229
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The biotin domain peptide from the biotin carboxyl carrier protein of Escherichia coli acetyl-CoA carboxylase causes a marked increase in the catalytic efficiency of biotin carboxylase and carboxyltransferase relative to free biotin.
    Blanchard CZ; Chapman-Smith A; Wallace JC; Waldrop GL
    J Biol Chem; 1999 Nov; 274(45):31767-9. PubMed ID: 10542197
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of the Roles of Allosteric Domain Arginine, Aspartate, and Glutamate Residues of Rhizobium etli Pyruvate Carboxylase in Relation to Its Activation by Acetyl CoA.
    Sirithanakorn C; Jitrapakdee S; Attwood PV
    Biochemistry; 2016 Aug; 55(30):4220-8. PubMed ID: 27379711
    [TBL] [Abstract][Full Text] [Related]  

  • 39. VO2+(IV) complexes with pyruvate carboxylase: activation of oxaloacetate decarboxylation and EPR properties of enzyme-VO2+ complexes.
    Werneburg BG; Ash DE
    Biochemistry; 1997 Nov; 36(47):14392-402. PubMed ID: 9398157
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Roles of Arg427 and Arg472 in the binding and allosteric effects of acetyl CoA in pyruvate carboxylase.
    Adina-Zada A; Sereeruk C; Jitrapakdee S; Zeczycki TN; St Maurice M; Cleland WW; Wallace JC; Attwood PV
    Biochemistry; 2012 Oct; 51(41):8208-17. PubMed ID: 22985389
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.