These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 25157600)

  • 1. Quadrupole-enhanced Raman scattering.
    Hastings SP; Swanglap P; Qian Z; Fang Y; Park SJ; Link S; Engheta N; Fakhraai Z
    ACS Nano; 2014 Sep; 8(9):9025-34. PubMed ID: 25157600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modal interference in spiky nanoshells.
    Hastings SP; Qian Z; Swanglap P; Fang Y; Engheta N; Park SJ; Link S; Fakhraai Z
    Opt Express; 2015 May; 23(9):11290-311. PubMed ID: 25969225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene oxide-encoded Ag nanoshells with single-particle detection sensitivity towards cancer cell imaging based on SERRS.
    Yim D; Kang H; Jeon SJ; Kim HI; Yang JK; Kang TW; Lee S; Choo J; Lee YS; Kim JW; Kim JH
    Analyst; 2015 May; 140(10):3362-7. PubMed ID: 25811703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of electromagnetic enhancement of surface enhanced hyper Raman scattering using plasmonic properties of binary active sites in single Ag nanoaggregates.
    Itoh T; Yoshikawa H; Yoshida K; Biju V; Ishikawa M
    J Chem Phys; 2009 Jun; 130(21):214706. PubMed ID: 19508086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Far- and near-field properties of gold nanoshells studied by photoacoustic and surface-enhanced Raman spectroscopies.
    Weber V; Feis A; Gellini C; Pilot R; Salvi PR; Signorini R
    Phys Chem Chem Phys; 2015 Sep; 17(33):21190-7. PubMed ID: 25559555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time monitoring of lipid transfer between vesicles and hybrid bilayers on Au nanoshells using surface enhanced Raman scattering (SERS).
    Kundu J; Levin CS; Halas NJ
    Nanoscale; 2009 Oct; 1(1):114-7. PubMed ID: 20644868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determining the conformation of thiolated poly(ethylene glycol) on Au nanoshells by surface-enhanced Raman scattering spectroscopic assay.
    Levin CS; Bishnoi SW; Grady NK; Halas NJ
    Anal Chem; 2006 May; 78(10):3277-81. PubMed ID: 16689527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic enhancement of Raman optical activity in molecules near metal nanoshells.
    Acevedo R; Lombardini R; Halas NJ; Johnson BR
    J Phys Chem A; 2009 Nov; 113(47):13173-83. PubMed ID: 19639972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy.
    Kleinman SL; Sharma B; Blaber MG; Henry AI; Valley N; Freeman RG; Natan MJ; Schatz GC; Van Duyne RP
    J Am Chem Soc; 2013 Jan; 135(1):301-8. PubMed ID: 23214430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SERS-active Ag/Au bimetallic nanoalloys on Si/SiO(x).
    Alvarez-Puebla RA; Bravo-Vasquez JP; Cheben P; Xu DX; Waldron P; Fenniri H
    J Colloid Interface Sci; 2009 May; 333(1):237-41. PubMed ID: 19251268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining surface plasmon resonance (SPR) spectroscopy with surface-enhanced Raman scattering (SERS).
    Meyer SA; Le Ru EC; Etchegoin PG
    Anal Chem; 2011 Mar; 83(6):2337-44. PubMed ID: 21322587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface enhanced coherent anti-stokes Raman scattering on nanostructured gold surfaces.
    Steuwe C; Kaminski CF; Baumberg JJ; Mahajan S
    Nano Lett; 2011 Dec; 11(12):5339-43. PubMed ID: 22074256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser induced SERS switching using plasmonic heating of PNIPAM coated HGNs.
    Kearns H; Shand NC; Faulds K; Graham D
    Chem Commun (Camb); 2015 May; 51(38):8138-41. PubMed ID: 25873474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface plasmon resonance and field enhancement in #-shaped gold wires metamaterial.
    Hu WQ; Liang EJ; Ding P; Cai GW; Xue QZ
    Opt Express; 2009 Nov; 17(24):21843-9. PubMed ID: 19997429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailoring plasmonic substrates for surface enhanced spectroscopies.
    Lal S; Grady NK; Kundu J; Levin CS; Lassiter JB; Halas NJ
    Chem Soc Rev; 2008 May; 37(5):898-911. PubMed ID: 18443675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-infrared II plasmonic porous cubic nanoshells for in vivo noninvasive SERS visualization of sub-millimeter microtumors.
    Li L; Jiang R; Shan B; Lu Y; Zheng C; Li M
    Nat Commun; 2022 Sep; 13(1):5249. PubMed ID: 36068273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS.
    Ye J; Wen F; Sobhani H; Lassiter JB; Van Dorpe P; Nordlander P; Halas NJ
    Nano Lett; 2012 Mar; 12(3):1660-7. PubMed ID: 22339688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minimally invasive surface-enhanced Raman scattering detection with depth profiles based on a surface-enhanced Raman scattering-active acupuncture needle.
    Dong J; Chen Q; Rong C; Li D; Rao Y
    Anal Chem; 2011 Aug; 83(16):6191-5. PubMed ID: 21728307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.