These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 25157600)

  • 21. Influence of the number of nanoparticles on the enhancement properties of surface-enhanced Raman scattering active area: sensitivity versus repeatability.
    Margueritat J; Gehan H; Grand J; Lévi G; Aubard J; Félidj N; Bouhelier A; Colas-Des-Francs G; Markey L; Marco De Lucas C; Dereux A; Finot E
    ACS Nano; 2011 Mar; 5(3):1630-8. PubMed ID: 21366249
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Symmetry breaking in gold-silica-gold multilayer nanoshells.
    Hu Y; Noelck SJ; Drezek RA
    ACS Nano; 2010 Mar; 4(3):1521-8. PubMed ID: 20146507
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface-enhanced Raman scattering on nanoshells with tunable surface plasmon resonance.
    Alvarez-Puebla RA; Ross DJ; Nazri GA; Aroca RF
    Langmuir; 2005 Nov; 21(23):10504-8. PubMed ID: 16262313
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanoshell-based substrates for surface enhanced spectroscopic detection of biomolecules.
    Levin CS; Kundu J; Barhoumi A; Halas NJ
    Analyst; 2009 Sep; 134(9):1745-50. PubMed ID: 19684894
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SERS biodetection using gold-silica nanoshells and nitrocellulose membranes.
    Bishnoi SW; Lin YJ; Tibudan M; Huang Y; Nakaema M; Swarup V; Keiderling TA
    Anal Chem; 2011 Jun; 83(11):4053-60. PubMed ID: 21504225
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multifunctional superparamagnetic nanoshells: combining two-photon luminescence imaging, surface-enhanced Raman scattering and magnetic separation.
    Jin X; Li H; Wang S; Kong N; Xu H; Fu Q; Gu H; Ye J
    Nanoscale; 2014 Nov; 6(23):14360-70. PubMed ID: 25329447
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption.
    Le F; Brandl DW; Urzhumov YA; Wang H; Kundu J; Halas NJ; Aizpurua J; Nordlander P
    ACS Nano; 2008 Apr; 2(4):707-18. PubMed ID: 19206602
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly controlled surface-enhanced Raman scattering chips using nanoengineered gold blocks.
    Yokota Y; Ueno K; Misawa H
    Small; 2011 Jan; 7(2):252-8. PubMed ID: 21213390
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Embedding Raman Tags between Au Nanostar@Nanoshell for Multiplex Immunosensing.
    Yang T; Jiang J
    Small; 2016 Sep; 12(36):4980-4985. PubMed ID: 27273763
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatially Resolving the Enhancement Effect in Surface-Enhanced Coherent Anti-Stokes Raman Scattering by Plasmonic Doppler Gratings.
    Ouyang L; Meyer-Zedler T; See KM; Chen WL; Lin FC; Akimov D; Ehtesabi S; Richter M; Schmitt M; Chang YM; Gräfe S; Popp J; Huang JS
    ACS Nano; 2021 Jan; 15(1):809-818. PubMed ID: 33356140
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reproducible SERRS from structured gold surfaces.
    Mahajan S; Baumberg JJ; Russell AE; Bartlett PN
    Phys Chem Chem Phys; 2007 Dec; 9(45):6016-20. PubMed ID: 18004415
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Correct spectral conversion between surface-enhanced raman and plasmon resonance scattering from nanoparticle dimers for single-molecule detection.
    Lee K; Irudayaraj J
    Small; 2013 Apr; 9(7):1106-15. PubMed ID: 23281179
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultraviolet surface-enhanced Raman scattering at the plasmonic band edge of a metallic grating.
    Mattiucci N; D'Aguanno G; Everitt HO; Foreman JV; Callahan JM; Buncick MC; Bloemer MJ
    Opt Express; 2012 Jan; 20(2):1868-77. PubMed ID: 22274532
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wavelength-scanned surface-enhanced Raman excitation spectroscopy.
    McFarland AD; Young MA; Dieringer JA; Van Duyne RP
    J Phys Chem B; 2005 Jun; 109(22):11279-85. PubMed ID: 16852377
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Study of coupling efficiency of molecules to surface plasmon polaritons in surface-enhanced Raman scattering (SERS).
    Chan CY; Cao ZL; Ong HC
    Opt Express; 2013 Jun; 21(12):14674-82. PubMed ID: 23787656
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Jointly tuned plasmonic-excitonic photovoltaics using nanoshells.
    Paz-Soldan D; Lee A; Thon SM; Adachi MM; Dong H; Maraghechi P; Yuan M; Labelle AJ; Hoogland S; Liu K; Kumacheva E; Sargent EH
    Nano Lett; 2013 Apr; 13(4):1502-8. PubMed ID: 23444829
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Raman enhancement on a broadband meta-surface.
    Ayas S; Güner H; Türker B; Ekiz OÖ; Dirisaglik F; Okyay AK; Dâna A
    ACS Nano; 2012 Aug; 6(8):6852-61. PubMed ID: 22845672
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-assembled silver nanochains for surface-enhanced Raman scattering.
    Yang Y; Shi J; Tanaka T; Nogami M
    Langmuir; 2007 Nov; 23(24):12042-7. PubMed ID: 17963408
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Double resonance surface enhanced Raman scattering substrates: an intuitive coupled oscillator model.
    Chu Y; Wang D; Zhu W; Crozier KB
    Opt Express; 2011 Aug; 19(16):14919-28. PubMed ID: 21934853
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The plasmonic engineering of metal nanoparticles for enhanced fluorescence and Raman scattering.
    Cade NI; Ritman-Meer T; Kwaka K; Richards D
    Nanotechnology; 2009 Jul; 20(28):285201. PubMed ID: 19546490
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.