These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 25157643)

  • 1. Surface presentation of functional peptides in solution determines cell internalization efficiency of TAT conjugated nanoparticles.
    Todorova N; Chiappini C; Mager M; Simona B; Patel II; Stevens MM; Yarovsky I
    Nano Lett; 2014 Sep; 14(9):5229-37. PubMed ID: 25157643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Negotiation of intracellular membrane barriers by TAT-modified gold nanoparticles.
    Krpetić Z; Saleemi S; Prior IA; Sée V; Qureshi R; Brust M
    ACS Nano; 2011 Jun; 5(6):5195-201. PubMed ID: 21609028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relevance of biophysical interactions of nanoparticles with a model membrane in predicting cellular uptake: study with TAT peptide-conjugated nanoparticles.
    Peetla C; Rao KS; Labhasetwar V
    Mol Pharm; 2009; 6(5):1311-20. PubMed ID: 19243206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanism of HIV-1 TAT peptide and its conjugated gold nanoparticles translocating across lipid membranes.
    Quan X; Sun D; Zhou J
    Phys Chem Chem Phys; 2019 May; 21(20):10300-10310. PubMed ID: 31070638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamics of cell-penetrating HIV1 TAT peptide insertion into PC/PS/CHOL model bilayers through transmembrane pores: the roles of cholesterol and anionic lipids.
    Hu Y; Patel S
    Soft Matter; 2016 Aug; 12(32):6716-27. PubMed ID: 27435187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulations suggest a mechanism for translocation of the HIV-1 TAT peptide across lipid membranes.
    Herce HD; Garcia AE
    Proc Natl Acad Sci U S A; 2007 Dec; 104(52):20805-10. PubMed ID: 18093956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TAT and HA2 facilitate cellular uptake of gold nanoparticles but do not lead to cytosolic localisation.
    Cesbron Y; Shaheen U; Free P; Lévy R
    PLoS One; 2015; 10(4):e0121683. PubMed ID: 25836335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-pH Sensitive Charge-Reversal Polypeptide Micelles for Tumor-Triggered Targeting Uptake and Nuclear Drug Delivery.
    Han SS; Li ZY; Zhu JY; Han K; Zeng ZY; Hong W; Li WX; Jia HZ; Liu Y; Zhuo RX; Zhang XZ
    Small; 2015 Jun; 11(21):2543-54. PubMed ID: 25626995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear localization of HIV-1 tat functionalized gold nanoparticles.
    Berry CC; de la Fuente JM; Mullin M; Chu SW; Curtis AS
    IEEE Trans Nanobioscience; 2007 Dec; 6(4):262-9. PubMed ID: 18217618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photodamage of lipid bilayers by irradiation of a fluorescently labeled cell-penetrating peptide.
    Meerovich I; Muthukrishnan N; Johnson GA; Erazo-Oliveras A; Pellois JP
    Biochim Biophys Acta; 2014 Jan; 1840(1):507-15. PubMed ID: 24135456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell membranes open "doors" for cationic nanoparticles/biomolecules: insights into uptake kinetics.
    Lin J; Alexander-Katz A
    ACS Nano; 2013 Dec; 7(12):10799-808. PubMed ID: 24251827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced cellular uptake of near-infrared triggered targeted nanoparticles by cell-penetrating peptide TAT for combined chemo/photothermal/photodynamic therapy.
    Wu H; You C; Chen F; Jiao J; Gao Z; An P; Sun B; Chen R
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109738. PubMed ID: 31349475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and characterization of chitosan-PEG-TAT nanoparticles for the intracellular delivery of siRNA.
    Malhotra M; Tomaro-Duchesneau C; Saha S; Kahouli I; Prakash S
    Int J Nanomedicine; 2013; 8():2041-52. PubMed ID: 23723699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dye-doped silica nanoparticle with HIV-1 TAT peptide for bioimaging.
    Choi JH; Kang SR; Kim H; Um SH; Shin K; Choi JW; Oh BK
    J Biomed Nanotechnol; 2013 Feb; 9(2):291-4. PubMed ID: 23627057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-Membrane Penetration of Tat-Conjugated Polymeric Micelles: Effect of Tat Coating Density.
    Ming Y; Xiao Y; Tian Y; Zhou S
    Macromol Biosci; 2019 Apr; 19(4):e1800364. PubMed ID: 30625260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single Particle Tracking of Peptides-Modified Nanocargo on Lipid Membrane Revealing Bulk-Mediated Diffusion.
    Wei L; Ye Z; Xu Y; Chen B; Yeung ES; Xiao L
    Anal Chem; 2016 Dec; 88(24):11973-11977. PubMed ID: 28193017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Double-walled Au nanocage/SiO2 nanorattles: integrating SERS imaging, drug delivery and photothermal therapy.
    Hu F; Zhang Y; Chen G; Li C; Wang Q
    Small; 2015 Feb; 11(8):985-93. PubMed ID: 25348096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced intracellular translocation and biodistribution of gold nanoparticles functionalized with a cell-penetrating peptide (VG-21) from vesicular stomatitis virus.
    Tiwari PM; Eroglu E; Bawage SS; Vig K; Miller ME; Pillai S; Dennis VA; Singh SR
    Biomaterials; 2014 Nov; 35(35):9484-94. PubMed ID: 25154664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frozen translational and rotational motion of human immunodeficiency virus transacting activator of transcription peptide-modified nanocargo on neutral lipid bilayer.
    Wei L; Zhao X; Chen B; Li H; Xiao L; Yeung ES
    Anal Chem; 2013 May; 85(10):5169-75. PubMed ID: 23581852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH-Sensitive nanoparticles as smart carriers for selective intracellular drug delivery to tumor.
    Li XX; Chen J; Shen JM; Zhuang R; Zhang SQ; Zhu ZY; Ma JB
    Int J Pharm; 2018 Jul; 545(1-2):274-285. PubMed ID: 29733971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.