BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 25157750)

  • 1. ATP binding and aspartate protonation enhance photoinduced electron transfer in plant cryptochrome.
    Cailliez F; Müller P; Gallois M; de la Lande A
    J Am Chem Soc; 2014 Sep; 136(37):12974-86. PubMed ID: 25157750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP binding promotes light-induced structural changes to the protein moiety of
    Iwata T; Yamada D; Mikuni K; Agata K; Hitomi K; Getzoff ED; Kandori H
    Photochem Photobiol Sci; 2020 Oct; 19(10):1326-1331. PubMed ID: 32935701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP binding turns plant cryptochrome into an efficient natural photoswitch.
    Müller P; Bouly JP; Hitomi K; Balland V; Getzoff ED; Ritz T; Brettel K
    Sci Rep; 2014 Jun; 4():5175. PubMed ID: 24898692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microsecond light-induced proton transfer to flavin in the blue light sensor plant cryptochrome.
    Langenbacher T; Immeln D; Dick B; Kottke T
    J Am Chem Soc; 2009 Oct; 131(40):14274-80. PubMed ID: 19754110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impacts of Cys392, Asp393, and ATP on the FAD Binding, Photoreduction, and the Stability of the Radical State of Chlamydomonas reinhardtii Cryptochrome.
    Xu L; Wen B; Shao W; Yao P; Zheng W; Zhou Z; Zhang Y; Zhu G
    Chembiochem; 2019 Apr; 20(7):940-948. PubMed ID: 30548754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trp triad-dependent rapid photoreduction is not required for the function of Arabidopsis CRY1.
    Gao J; Wang X; Zhang M; Bian M; Deng W; Zuo Z; Yang Z; Zhong D; Lin C
    Proc Natl Acad Sci U S A; 2015 Jul; 112(29):9135-40. PubMed ID: 26106155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperactivity of the
    Orth C; Niemann N; Hennig L; Essen LO; Batschauer A
    J Biol Chem; 2017 Aug; 292(31):12906-12920. PubMed ID: 28634231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photocycle dynamics of the E149A mutant of cryptochrome 3 from Arabidopsis thaliana.
    Zirak P; Penzkofer A; Moldt J; Pokorny R; Batschauer A; Essen LO
    J Photochem Photobiol B; 2009 Nov; 97(2):94-108. PubMed ID: 19800811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic stability of the flavin semiquinone in photolyase and cryptochrome-DASH.
    Damiani MJ; Yalloway GN; Lu J; McLeod NR; O'Neill MA
    Biochemistry; 2009 Dec; 48(48):11399-411. PubMed ID: 19888752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absorption and fluorescence spectroscopic characterization of cryptochrome 3 from Arabidopsis thaliana.
    Song SH; Dick B; Penzkofer A; Pokorny R; Batschauer A; Essen LO
    J Photochem Photobiol B; 2006 Oct; 85(1):1-16. PubMed ID: 16725342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast Oxidation of a Tyrosine by Proton-Coupled Electron Transfer Promotes Light Activation of an Animal-like Cryptochrome.
    Lacombat F; Espagne A; Dozova N; Plaza P; Müller P; Brettel K; Franz-Badur S; Essen LO
    J Am Chem Soc; 2019 Aug; 141(34):13394-13409. PubMed ID: 31368699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microsecond Deprotonation of Aspartic Acid and Response of the α/β Subdomain Precede C-Terminal Signaling in the Blue Light Sensor Plant Cryptochrome.
    Thöing C; Oldemeyer S; Kottke T
    J Am Chem Soc; 2015 May; 137(18):5990-9. PubMed ID: 25909499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic characterization of radicals and radical pairs in fruit fly cryptochrome - protonated and nonprotonated flavin radical-states.
    Paulus B; Bajzath C; Melin F; Heidinger L; Kromm V; Herkersdorf C; Benz U; Mann L; Stehle P; Hellwig P; Weber S; Schleicher E
    FEBS J; 2015 Aug; 282(16):3175-89. PubMed ID: 25879256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural insights into BIC-mediated inactivation of Arabidopsis cryptochrome 2.
    Ma L; Wang X; Guan Z; Wang L; Wang Y; Zheng L; Gong Z; Shen C; Wang J; Zhang D; Liu Z; Yin P
    Nat Struct Mol Biol; 2020 May; 27(5):472-479. PubMed ID: 32398826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. What accounts for the different functions in photolyases and cryptochromes: a computational study of proton transfers to FAD.
    Holub D; Kubař T; Mast T; Elstner M; Gillet N
    Phys Chem Chem Phys; 2019 Jun; 21(22):11956-11966. PubMed ID: 31134233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The signaling state of Arabidopsis cryptochrome 2 contains flavin semiquinone.
    Banerjee R; Schleicher E; Meier S; Viana RM; Pokorny R; Ahmad M; Bittl R; Batschauer A
    J Biol Chem; 2007 May; 282(20):14916-22. PubMed ID: 17355959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectro-temporal characterization of the photoactivation mechanism of two new oxidized cryptochrome/photolyase photoreceptors.
    Brazard J; Usman A; Lacombat F; Ley C; Martin MM; Plaza P; Mony L; Heijde M; Zabulon G; Bowler C
    J Am Chem Soc; 2010 Apr; 132(13):4935-45. PubMed ID: 20222748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photochemistry of Wild-Type and N378D Mutant E. coli DNA Photolyase with Oxidized FAD Cofactor Studied by Transient Absorption Spectroscopy.
    Müller P; Brettel K; Grama L; Nyitrai M; Lukacs A
    Chemphyschem; 2016 May; 17(9):1329-40. PubMed ID: 26852903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular metabolites modulate in vivo signaling of Arabidopsis cryptochrome-1.
    El-Esawi M; Glascoe A; Engle D; Ritz T; Link J; Ahmad M
    Plant Signal Behav; 2015; 10(9):e1063758. PubMed ID: 26313597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular metabolites enhance the light sensitivity of Arabidopsis cryptochrome through alternate electron transfer pathways.
    Engelhard C; Wang X; Robles D; Moldt J; Essen LO; Batschauer A; Bittl R; Ahmad M
    Plant Cell; 2014 Nov; 26(11):4519-31. PubMed ID: 25428980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.