These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 25158200)
1. The character of gene expression of human periosteum used to form new tissue in allograft bone. Kemppainen J; Yu Q; Alexander J; Jacquet R; Scharschmidt T; Landis W Connect Tissue Res; 2014 Aug; 55 Suppl 1():146-9. PubMed ID: 25158200 [TBL] [Abstract][Full Text] [Related]
2. Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering. Zhang X; Xie C; Lin AS; Ito H; Awad H; Lieberman JR; Rubery PT; Schwarz EM; O'Keefe RJ; Guldberg RE J Bone Miner Res; 2005 Dec; 20(12):2124-37. PubMed ID: 16294266 [TBL] [Abstract][Full Text] [Related]
3. Bone tissue engineering by way of allograft revitalization: mechanistic and mechanical investigations using a porcine model. Runyan CM; Ali ST; Chen W; Calder BW; Rumburg AE; Billmire DA; Taylor JA J Oral Maxillofac Surg; 2014 May; 72(5):1000.e1-11. PubMed ID: 24742484 [TBL] [Abstract][Full Text] [Related]
4. Characterization of Tissue-Engineered Human Periosteum and Allograft Bone Constructs: The Potential of Periosteum in Bone Regenerative Medicine. Yu Q; DiFeo Jacquet R; Landis WJ Cells Tissues Organs; 2020; 209(2-3):128-143. PubMed ID: 32937633 [TBL] [Abstract][Full Text] [Related]
5. The effect of mesenchymal stem cells delivered via hydrogel-based tissue engineered periosteum on bone allograft healing. Hoffman MD; Xie C; Zhang X; Benoit DS Biomaterials; 2013 Nov; 34(35):8887-98. PubMed ID: 23958029 [TBL] [Abstract][Full Text] [Related]
6. Structural bone allograft combined with genetically engineered mesenchymal stem cells as a novel platform for bone tissue engineering. Xie C; Reynolds D; Awad H; Rubery PT; Pelled G; Gazit D; Guldberg RE; Schwarz EM; O'Keefe RJ; Zhang X Tissue Eng; 2007 Mar; 13(3):435-45. PubMed ID: 17518596 [TBL] [Abstract][Full Text] [Related]
8. Bone allograft and implant fixation tested under influence of bio-burden reduction, periosteal augmentation and topical antibiotics. Animal experimental studies. Barckman J Dan Med J; 2014 Jan; 61(1):B4720. PubMed ID: 24393592 [TBL] [Abstract][Full Text] [Related]
9. Periosteum Mimetic Coating on Structural Bone Allografts Zhuang Z; John JV; Liao H; Luo J; Rubery P; Mesfin A; Boda SK; Xie J; Zhang X ACS Biomater Sci Eng; 2020 Nov; 6(11):6241-6252. PubMed ID: 33449646 [TBL] [Abstract][Full Text] [Related]
10. Emulating native periosteum cell population and subsequent paracrine factor production to promote tissue engineered periosteum-mediated allograft healing. Hoffman MD; Benoit DS Biomaterials; 2015 Jun; 52():426-40. PubMed ID: 25818449 [TBL] [Abstract][Full Text] [Related]
11. Matrix metalloproteinase (MMP)-degradable tissue engineered periosteum coordinates allograft healing via early stage recruitment and support of host neurovasculature. Li Y; Hoffman MD; Benoit DSW Biomaterials; 2021 Jan; 268():120535. PubMed ID: 33271450 [TBL] [Abstract][Full Text] [Related]
12. Combined delivery of FGF-2, TGF-β1, and adipose-derived stem cells from an engineered periosteum to a critical-sized mouse femur defect. Romero R; Travers JK; Asbury E; Pennybaker A; Chubb L; Rose R; Ehrhart NP; Kipper MJ J Biomed Mater Res A; 2017 Mar; 105(3):900-911. PubMed ID: 27874253 [TBL] [Abstract][Full Text] [Related]
13. Tissue engineering a human phalanx. Landis WJ; Chubinskaya S; Tokui T; Wada Y; Isogai N; Jacquet R J Tissue Eng Regen Med; 2017 Aug; 11(8):2373-2387. PubMed ID: 26999523 [TBL] [Abstract][Full Text] [Related]
14. Coating cortical bone allografts with periosteum-mimetic scaffolds made of chitosan, trimethyl chitosan, and heparin. Romero R; Chubb L; Travers JK; Gonzales TR; Ehrhart NP; Kipper MJ Carbohydr Polym; 2015 May; 122():144-51. PubMed ID: 25817653 [TBL] [Abstract][Full Text] [Related]
15. Morphologic comparison of healing patterns in ethylene oxide-sterilized cortical allografts and untreated cortical autografts in the dog. Johnson AL; Stein LE Am J Vet Res; 1988 Jan; 49(1):101-5. PubMed ID: 3281522 [TBL] [Abstract][Full Text] [Related]
16. Histomorphometric description of allograft bone remodeling and union in a canine segmental femoral defect model: a comparison of rhBMP-2, cancellous bone graft, and absorbable collagen sponge. Zabka AG; Pluhar GE; Edwards RB; Manley PA; Hayashi K; Heiner JP; Kalscheur VL; Seeherman HJ; Markel J Orthop Res; 2001 Mar; 19(2):318-27. PubMed ID: 11347707 [TBL] [Abstract][Full Text] [Related]
17. PTH promotes allograft integration in a calvarial bone defect. Sheyn D; Cohn Yakubovich D; Kallai I; Su S; Da X; Pelled G; Tawackoli W; Cook-Weins G; Schwarz EM; Gazit D; Gazit Z Mol Pharm; 2013 Dec; 10(12):4462-71. PubMed ID: 24131143 [TBL] [Abstract][Full Text] [Related]
18. Enhancing allograft bone healing through gene therapy. Rubery PT Spine (Phila Pa 1976); 2010 Aug; 35(17):1640-7. PubMed ID: 20628339 [TBL] [Abstract][Full Text] [Related]
19. Investigating the synergistic efficacy of BMP-7 and zoledronate on bone allografts using an open rat osteotomy model. Mathavan N; Bosemark P; Isaksson H; Tägil M Bone; 2013 Oct; 56(2):440-8. PubMed ID: 23845325 [TBL] [Abstract][Full Text] [Related]
20. Gene expression at graft-host interfaces of cortical bone allografts and autografts. Virolainen P; Vuorio E; Aro HT Clin Orthop Relat Res; 1993 Dec; (297):144-9. PubMed ID: 8242922 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]