These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 25158228)
1. Improved electrochemical performance of LiCoO₂ electrodes with ZnO coating by radio frequency magnetron sputtering. Dai X; Wang L; Xu J; Wang Y; Zhou A; Li J ACS Appl Mater Interfaces; 2014 Sep; 6(18):15853-9. PubMed ID: 25158228 [TBL] [Abstract][Full Text] [Related]
2. Enhanced electrochemical performance with surface coating by reactive magnetron sputtering on lithium-rich layered oxide electrodes. Qiu B; Wang J; Xia Y; Wei Z; Han S; Liu Z ACS Appl Mater Interfaces; 2014 Jun; 6(12):9185-93. PubMed ID: 24857766 [TBL] [Abstract][Full Text] [Related]
3. Enhanced Interfacial Kinetics and High-Voltage/High-Rate Performance of LiCoO Zhou A; Dai X; Lu Y; Wang Q; Fu M; Li J ACS Appl Mater Interfaces; 2016 Dec; 8(49):34123-34131. PubMed ID: 27960417 [TBL] [Abstract][Full Text] [Related]
4. Electrochemical performance of ZnO-coated Li Wang Y; Ren Y; Dai X; Yan X; Huang B; Li J R Soc Open Sci; 2018 Oct; 5(10):180762. PubMed ID: 30473827 [TBL] [Abstract][Full Text] [Related]
5. Effect of substrate temperature on morphology and electrochemical performance of radio frequency magnetron sputtered lithium nickel vanadate films used as negative electrodes for lithium microbatteries. Reddy MV; Pecquenard B; Vinatier P; Levasseur A J Phys Chem B; 2006 Mar; 110(9):4301-6. PubMed ID: 16509727 [TBL] [Abstract][Full Text] [Related]
6. Improved Cycling Stability of LiCoO Song S; Peng X; Huang K; Zhang H; Wu F; Xiang Y; Zhang X Nanoscale Res Lett; 2020 May; 15(1):110. PubMed ID: 32409895 [TBL] [Abstract][Full Text] [Related]
7. Enhanced Interfacial Kinetics and High Rate Performance of LiCoO Xiao B; Tang Q; Dai X; Wu F; Chen H; Li J; Mai Y; Gu Y ACS Omega; 2022 Sep; 7(35):31597-31606. PubMed ID: 36092563 [TBL] [Abstract][Full Text] [Related]
8. Sputtering graphite coating to improve the elevated-temperature cycling ability of the LiMn2O4 electrode. Wang J; Zhang Q; Li X; Wang Z; Guo H; Xu D; Zhang K Phys Chem Chem Phys; 2014 Aug; 16(30):16021-9. PubMed ID: 24963917 [TBL] [Abstract][Full Text] [Related]
9. Enhanced overcharge performance of nano-LiCoO2 by novel Li3VO4 surface coatings. Pu X; Yu C Nanoscale; 2012 Nov; 4(21):6743-7. PubMed ID: 23015028 [TBL] [Abstract][Full Text] [Related]
10. An alumina stabilized ZnO-graphene anode for lithium ion batteries via atomic layer deposition. Yu M; Wang A; Wang Y; Li C; Shi G Nanoscale; 2014 Oct; 6(19):11419-24. PubMed ID: 25148141 [TBL] [Abstract][Full Text] [Related]
11. Preparation of a ZnO Nanostructure as the Anode Material Using RF Magnetron Sputtering System. Lee S; Joung YH; Yoon YK; Choi W Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055233 [TBL] [Abstract][Full Text] [Related]
12. Enhanced electrochemical performance of ZnO-loaded/porous carbon composite as anode materials for lithium ion batteries. Shen X; Mu D; Chen S; Wu B; Wu F ACS Appl Mater Interfaces; 2013 Apr; 5(8):3118-25. PubMed ID: 23532681 [TBL] [Abstract][Full Text] [Related]
13. TiO Moon SH; Kim MC; Kim ES; Shin YK; Lee JE; Choi S; Park KW RSC Adv; 2019 Mar; 9(14):7903-7907. PubMed ID: 35521209 [TBL] [Abstract][Full Text] [Related]
14. The effects of substrate and annealing on structural and electrochemical properties in LiCoO2 thin films prepared by DC magnetron sputtering. Noh JP; Jung KT; Cho GB; Lee SH; Kim KW; Nam TH J Nanosci Nanotechnol; 2012 Jul; 12(7):5937-41. PubMed ID: 22966684 [TBL] [Abstract][Full Text] [Related]
15. Protection effect of ZrO2 coating layer on LiCoO2 thin film fabricated by DC magnetron sputtering. Noh JP; Jung KT; Jang MS; Kwon TH; Cho GB; Kim KW; Nam TH J Nanosci Nanotechnol; 2013 Oct; 13(10):7152-4. PubMed ID: 24245215 [TBL] [Abstract][Full Text] [Related]
16. Carbon and RuO2 binary surface coating for the Li3V2(PO4)3 cathode material for lithium-ion batteries. Zhang R; Zhang Y; Zhu K; Du F; Fu Q; Yang X; Wang Y; Bie X; Chen G; Wei Y ACS Appl Mater Interfaces; 2014 Aug; 6(15):12523-30. PubMed ID: 25010184 [TBL] [Abstract][Full Text] [Related]
17. Annealing Optimization of Lithium Cobalt Oxide Thin Film for Use as a Cathode in Lithium-Ion Microbatteries. Bekzhanov A; Uzakbaiuly B; Mukanova A; Bakenov Z Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35808024 [TBL] [Abstract][Full Text] [Related]
18. Blow-Spinning Enabled Precise Doping and Coating for Improving High-Voltage Lithium Cobalt Oxide Cathode Performance. Tian T; Zhang TW; Yin YC; Tan YH; Song YH; Lu LL; Yao HB Nano Lett; 2020 Jan; 20(1):677-685. PubMed ID: 31825636 [TBL] [Abstract][Full Text] [Related]
19. Unveiling the Intrinsic Cycle Reversibility of a LiCoO Seong WM; Yoon K; Lee MH; Jung SK; Kang K Nano Lett; 2019 Jan; 19(1):29-37. PubMed ID: 30365316 [TBL] [Abstract][Full Text] [Related]
20. Three-Dimensional, Fibrous Lithium Iron Phosphate Structures Deposited by Magnetron Sputtering. Bünting A; Uhlenbruck S; Sebold D; Buchkremer HP; Vaßen R ACS Appl Mater Interfaces; 2015 Oct; 7(40):22594-600. PubMed ID: 26381359 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]