These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 25158484)

  • 1. [Hydrologic processes of the different landscape zones in Fenhe River headwater catchment].
    Yang YG; Li CM; Qin ZD; Zou SB
    Huan Jing Ke Xue; 2014 Jun; 35(6):2108-13. PubMed ID: 25158484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Spatial and temporal variations of hydrological characteristic on the landscape zone scale in alpine cold region].
    Yang YG; Hu JF; Xiao HL; Zou SB; Yin ZL
    Huan Jing Ke Xue; 2013 Oct; 34(10):3797-803. PubMed ID: 24364295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implications of hydrologic connectivity between hillslopes and riparian zones on streamflow composition.
    von Freyberg J; Radny D; Gall HE; Schirmer M
    J Contam Hydrol; 2014 Nov; 169():62-74. PubMed ID: 25106837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin and formation mechanism of salty water in Zuli River catchment of the Yellow River.
    Liu Z; Tan H; Shi D; Xu P; Elenga HI
    Water Environ Res; 2019 Mar; 91(3):222-238. PubMed ID: 30698893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrological and pollution processes in mining area of Fenhe River Basin in China.
    Yang Y; Meng Z; Jiao W
    Environ Pollut; 2018 Mar; 234():743-750. PubMed ID: 29245148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrology of the North Klondike River: carbon export, water balance and inter-annual climate influences within a sub-alpine permafrost catchment.
    Lapp A; Clark I; Macumber A; Patterson T
    Isotopes Environ Health Stud; 2017 Oct; 53(5):500-517. PubMed ID: 28745515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the long-term effects of land use changes on runoff patterns and food production in a large lake watershed with policy implications.
    Sun Z; Lotz T; Chang NB
    J Environ Manage; 2017 Dec; 204(Pt 1):92-101. PubMed ID: 28863340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First snow, glacier and groundwater contribution quantification in the upper Mendoza River basin using stable water isotopes.
    Crespo SA; Fernandoy F; Cara L; Klarian S; Lavergne C
    Isotopes Environ Health Stud; 2020; 56(5-6):566-585. PubMed ID: 32744912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using stable isotopes to assess river water dynamics and groundwater input in the largest European Arctic river (Severnaya Dvina).
    Malov A; Pokrovsky O; Chupakov A
    Environ Monit Assess; 2020 Jun; 192(7):444. PubMed ID: 32562061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Groundwater Storage Change in the Jinsha River Basin from GRACE, Hydrologic Models, and In Situ Data.
    Chao N; Chen G; Li J; Xiang L; Wang Z; Tian K
    Ground Water; 2020 Sep; 58(5):735-748. PubMed ID: 31773723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Relationship between groundwater quality index of physics and chemistry in riparian zone and water quality in river].
    Xu HS; Zhao TQ; Meng HQ; Xu ZX; Ma CH
    Huan Jing Ke Xue; 2011 Mar; 32(3):632-40. PubMed ID: 21634157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin.
    Narula KK; Gosain AK
    Sci Total Environ; 2013 Dec; 468-469 Suppl():S102-16. PubMed ID: 23452999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Groundwater discharge in high-mountain watersheds: A valuable resource for downstream semi-arid zones. The case of the Bérchules River in Sierra Nevada (Southern Spain).
    Jódar J; Cabrera JA; Martos-Rosillo S; Ruiz-Constán A; González-Ramón A; Lambán LJ; Herrera C; Custodio E
    Sci Total Environ; 2017 Sep; 593-594():760-772. PubMed ID: 28364610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Storm runoff generation in headwater catchments on the Chinese Loess Plateau after long-term vegetation rehabilitation.
    Jin Z; Guo L; Yu Y; Luo D; Fan B; Chu G
    Sci Total Environ; 2020 Dec; 748():141375. PubMed ID: 33113681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the multiscale hydrologic regulation of multipond systems in a humid agricultural catchment.
    Chen W; Nover D; Yen H; Xia Y; He B; Sun W; Viers J
    Water Res; 2020 Oct; 184():115987. PubMed ID: 32688156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Climate-change impacts on hydrology and nutrients in a Danish lowland river basin.
    Andersen HE; Kronvang B; Larsen SE; Hoffmann CC; Jensen TS; Rasmussen EK
    Sci Total Environ; 2006 Jul; 365(1-3):223-37. PubMed ID: 16647104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial and temporal characteristics of stable isotopes in the Tarim River Basin.
    Sun C; Li X; Chen Y; Li W; Stotler RL; Zhang Y
    Isotopes Environ Health Stud; 2016 Jun; 52(3):281-97. PubMed ID: 26862902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Major ion chemistry of surface water in the Xilin River Basin and the possible controls].
    Tang XW; Wu JK
    Huan Jing Ke Xue; 2014 Jan; 35(1):131-42. PubMed ID: 24720196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating petrography, mineralogy and hydrochemistry to constrain the influence and distribution of groundwater contributions to baseflow in poorly productive aquifers: insights from Gortinlieve catchment, Co. Donegal, NW Ireland.
    Caulfield J; Chelliah M; Comte JC; Cassidy R; Flynn R
    Sci Total Environ; 2014 Dec; 500-501():224-34. PubMed ID: 25217997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Destruction processes of mining on water environment in the mining area combining isotopic and hydrochemical tracer.
    Yang Y; Guo T; Jiao W
    Environ Pollut; 2018 Jun; 237():356-365. PubMed ID: 29501998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.