These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 2515858)

  • 61. Is the ubiquinone pool in the respiratory chain of the bacterium Paracoccus denitrificans really unhomogeneous?
    Kucera I; Kozák L; Dadák V
    Arch Biochem Biophys; 1987 Feb; 253(1):199-204. PubMed ID: 3813563
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Reversible dissociation of flavin mononucleotide from the mammalian membrane-bound NADH: ubiquinone oxidoreductase (complex I).
    Gostimskaya IS; Grivennikova VG; Cecchini G; Vinogradov AD
    FEBS Lett; 2007 Dec; 581(30):5803-6. PubMed ID: 18037377
    [TBL] [Abstract][Full Text] [Related]  

  • 63. New 4-hydroxypyridine and 4-hydroxyquinoline derivatives as inhibitors of NADH-ubiquinone reductase in the respiratory chain.
    Chung KH; Cho KY; Asami Y; Takahashi N; Yoshida S
    Z Naturforsch C J Biosci; 1989; 44(7-8):609-16. PubMed ID: 2505785
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Changes in NADH-ubiquinone reductase (complex I) with autolysis in the rat heart as experimental model.
    van Jaarsveld H; Potgieter GM; Lochner A
    Enzyme; 1986; 35(4):206-14. PubMed ID: 3096711
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The reaction sites of rotenone and ubiquinone with mitochondrial NADH dehydrogenase.
    Singer TP; Ramsay RR
    Biochim Biophys Acta; 1994 Aug; 1187(2):198-202. PubMed ID: 8075112
    [TBL] [Abstract][Full Text] [Related]  

  • 66. NADH: ubiquinone oxidoreductase in obligate aerobic yeasts.
    Büschges R; Bahrenberg G; Zimmermann M; Wolf K
    Yeast; 1994 Apr; 10(4):475-9. PubMed ID: 7941733
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Probing the ubiquinone reduction site in bovine mitochondrial complex I using a series of synthetic ubiquinones and inhibitors.
    Miyoshi H
    J Bioenerg Biomembr; 2001 Jun; 33(3):223-31. PubMed ID: 11695832
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effects of proteolytic digestion by chymotrypsin on the structure and catalytic properties of reduced nicotinamide-adenine dinucleotide-ubiquinone oxidoreductase from bovine heart mitochondria.
    Crowder SE; Ragan CI
    Biochem J; 1977 Aug; 165(2):295-301. PubMed ID: 411483
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Effects induced by rotenone during aerobic growth of Paracoccus denitrificans in continuous culture. Changes in energy conservation and electron transport associated with NADH dehydrogenase.
    Meijer EM; Schuitenmaker MG; Boogerd FC; Wever R; Stouthamer AH
    Arch Microbiol; 1978 Nov; 119(2):119-27. PubMed ID: 727852
    [No Abstract]   [Full Text] [Related]  

  • 70. Isolation of a physiologically active and a physiologically inactive mitochondrial NADH-ubiquinone reductase (complex I) from donkey hearts.
    van Jaarsveld H; Potgieter GM; Lochner A
    Anal Biochem; 1986 Apr; 154(1):267-75. PubMed ID: 3085542
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Interaction of the mitochondrial NADH-ubiquinone reductase with rotenone as related to the enzyme active/inactive transition.
    Grivennikova VG; Maklashina EO; Gavrikova EV; Vinogradov AD
    Biochim Biophys Acta; 1997 Apr; 1319(2-3):223-32. PubMed ID: 9131045
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Unidirectional effect of lauryl sulfate on the reversible NADH:ubiquinone oxidoreductase (Complex I).
    Grivennikova VG; Ushakova AV; Cecchini G; Vinogradov AD
    FEBS Lett; 2003 Aug; 549(1-3):39-42. PubMed ID: 12914921
    [TBL] [Abstract][Full Text] [Related]  

  • 73. New evidence for the dimeric nature of NADH:Q oxidoreductase in bovine-heart submitochondrial particles.
    van Belzen R; van Gaalen MC; Cuypers PA; Albracht SP
    Biochim Biophys Acta; 1990 Jun; 1017(2):152-9. PubMed ID: 2112409
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Post-translational modifications near the quinone binding site of mammalian complex I.
    Carroll J; Ding S; Fearnley IM; Walker JE
    J Biol Chem; 2013 Aug; 288(34):24799-808. PubMed ID: 23836892
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Comparison of the inhibitory action of synthetic capsaicin analogues with various NADH-ubiquinone oxidoreductases.
    Satoh T; Miyoshi H; Sakamoto K; Iwamura H
    Biochim Biophys Acta; 1996 Jan; 1273(1):21-30. PubMed ID: 8573592
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Structure of cytochrome c oxidase: a comparison of the bacterial and mitochondrial enzymes.
    Abramson J; Svensson-Ek M; Byrne B; Iwata S
    Biochim Biophys Acta; 2001 Jan; 1544(1-2):1-9. PubMed ID: 11341911
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Preferential binding of cisplatin to mitochondrial DNA and suppression of ATP generation in human malignant melanoma cells.
    Murata T; Hibasami H; Maekawa S; Tagawa T; Nakashima K
    Biochem Int; 1990; 20(5):949-55. PubMed ID: 2112385
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The specificity of mitochondrial complex I for ubiquinones.
    Degli Esposti M; Ngo A; McMullen GL; Ghelli A; Sparla F; Benelli B; Ratta M; Linnane AW
    Biochem J; 1996 Jan; 313 ( Pt 1)(Pt 1):327-34. PubMed ID: 8546703
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Attempts to define distinct parts of NADH:ubiquinone oxidoreductase (complex I).
    Friedrich T; Weidner U; Nehls U; Fecke W; Schneider R; Weiss H
    J Bioenerg Biomembr; 1993 Aug; 25(4):331-7. PubMed ID: 8226714
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Bioenergetics in clinical medicine: prevention by forms of coenzyme Q of the inhibition by adriamycin of coenzyme Q10-enzymes in mitochondria of the myocardium.
    Kishi T; Watanabe T; Folkers K
    Proc Natl Acad Sci U S A; 1976 Dec; 73(12):4653-6. PubMed ID: 1070015
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.