These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 25158906)

  • 21. An engineered Calvin-Benson-Bassham cycle for carbon dioxide fixation in Methylobacterium extorquens AM1.
    Schada von Borzyskowski L; Carrillo M; Leupold S; Glatter T; Kiefer P; Weishaupt R; Heinemann M; Erb TJ
    Metab Eng; 2018 May; 47():423-433. PubMed ID: 29625224
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comprehensive proteomics of Methylobacterium extorquens AM1 metabolism under single carbon and nonmethylotrophic conditions.
    Bosch G; Skovran E; Xia Q; Wang T; Taub F; Miller JA; Lidstrom ME; Hackett M
    Proteomics; 2008 Sep; 8(17):3494-505. PubMed ID: 18686303
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lanthanide-Dependent Regulation of Methanol Oxidation Systems in Methylobacterium extorquens AM1 and Their Contribution to Methanol Growth.
    Vu HN; Subuyuj GA; Vijayakumar S; Good NM; Martinez-Gomez NC; Skovran E
    J Bacteriol; 2016 Apr; 198(8):1250-9. PubMed ID: 26833413
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sign epistasis limits evolutionary trade-offs at the confluence of single- and multi-carbon metabolism in Methylobacterium extorquens AM1.
    Carroll SM; Lee MC; Marx CJ
    Evolution; 2014 Mar; 68(3):760-71. PubMed ID: 24164359
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measurement of respiration rates of Methylobacterium extorquens AM1 cultures by use of a phosphorescence-based sensor.
    Strovas TJ; Dragavon JM; Hankins TJ; Callis JB; Burgess LW; Lidstrom ME
    Appl Environ Microbiol; 2006 Feb; 72(2):1692-5. PubMed ID: 16461730
    [TBL] [Abstract][Full Text] [Related]  

  • 26. QscR, a LysR-type transcriptional regulator and CbbR homolog, is involved in regulation of the serine cycle genes in Methylobacterium extorquens AM1.
    Kalyuzhnaya MG; Lidstrom ME
    J Bacteriol; 2003 Feb; 185(4):1229-35. PubMed ID: 12562792
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel dephosphotetrahydromethanopterin biosynthesis genes discovered via mutagenesis in Methylobacterium extorquens AM1.
    Chistoserdova L; Rasche ME; Lidstrom ME
    J Bacteriol; 2005 Apr; 187(7):2508-12. PubMed ID: 15774894
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formaldehyde-detoxifying role of the tetrahydromethanopterin-linked pathway in Methylobacterium extorquens AM1.
    Marx CJ; Chistoserdova L; Lidstrom ME
    J Bacteriol; 2003 Dec; 185(24):7160-8. PubMed ID: 14645276
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiple formate dehydrogenase enzymes in the facultative methylotroph Methylobacterium extorquens AM1 are dispensable for growth on methanol.
    Chistoserdova L; Laukel M; Portais JC; Vorholt JA; Lidstrom ME
    J Bacteriol; 2004 Jan; 186(1):22-8. PubMed ID: 14679220
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Difference in C3-C4 metabolism underlies tradeoff between growth rate and biomass yield in Methylobacterium extorquens AM1.
    Fu Y; Beck DA; Lidstrom ME
    BMC Microbiol; 2016 Jul; 16(1):156. PubMed ID: 27435978
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thioesterases for ethylmalonyl-CoA pathway derived dicarboxylic acid production in Methylobacterium extorquens AM1.
    Sonntag F; Buchhaupt M; Schrader J
    Appl Microbiol Biotechnol; 2014 May; 98(10):4533-44. PubMed ID: 24419796
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cre/loxP-Mediated Multicopy Integration of the Mevalonate Operon into the Genome of Methylobacterium extorquens AM1.
    Liang WF; Sun MY; Cui LY; Zhang C; Xing XH
    Appl Biochem Biotechnol; 2018 Jul; 185(3):565-577. PubMed ID: 29243041
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CcrR, a TetR family transcriptional regulator, activates the transcription of a gene of the Ethylmalonyl coenzyme A pathway in Methylobacterium extorquens AM1.
    Hu B; Lidstrom M
    J Bacteriol; 2012 Jun; 194(11):2802-8. PubMed ID: 22447902
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of two methanopterin biosynthesis mutants of Methylobacterium extorquens AM1 by use of a tetrahydromethanopterin bioassay.
    Rasche ME; Havemann SA; Rosenzvaig M
    J Bacteriol; 2004 Mar; 186(5):1565-70. PubMed ID: 14973120
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioconversion of methanol to value-added mevalonate by engineered Methylobacterium extorquens AM1 containing an optimized mevalonate pathway.
    Zhu WL; Cui JY; Cui LY; Liang WF; Yang S; Zhang C; Xing XH
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2171-82. PubMed ID: 26521242
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions.
    Sy A; Timmers AC; Knief C; Vorholt JA
    Appl Environ Microbiol; 2005 Nov; 71(11):7245-52. PubMed ID: 16269765
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Breeding of Methanol-Tolerant Methylobacterium extorquens AM1 by Atmospheric and Room Temperature Plasma Mutagenesis Combined With Adaptive Laboratory Evolution.
    Cui LY; Wang SS; Guan CG; Liang WF; Xue ZL; Zhang C; Xing XH
    Biotechnol J; 2018 Jun; 13(6):e1700679. PubMed ID: 29729127
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stoichiometric model for evaluating the metabolic capabilities of the facultative methylotroph Methylobacterium extorquens AM1, with application to reconstruction of C(3) and C(4) metabolism.
    Van Dien SJ; Lidstrom ME
    Biotechnol Bioeng; 2002 May; 78(3):296-312. PubMed ID: 11920446
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources.
    Vuilleumier S; Chistoserdova L; Lee MC; Bringel F; Lajus A; Zhou Y; Gourion B; Barbe V; Chang J; Cruveiller S; Dossat C; Gillett W; Gruffaz C; Haugen E; Hourcade E; Levy R; Mangenot S; Muller E; Nadalig T; Pagni M; Penny C; Peyraud R; Robinson DG; Roche D; Rouy Z; Saenampechek C; Salvignol G; Vallenet D; Wu Z; Marx CJ; Vorholt JA; Olson MV; Kaul R; Weissenbach J; Médigue C; Lidstrom ME
    PLoS One; 2009; 4(5):e5584. PubMed ID: 19440302
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The 380 kb pCMU01 plasmid encodes chloromethane utilization genes and redundant genes for vitamin B12- and tetrahydrofolate-dependent chloromethane metabolism in Methylobacterium extorquens CM4: a proteomic and bioinformatics study.
    Roselli S; Nadalig T; Vuilleumier S; Bringel F
    PLoS One; 2013; 8(4):e56598. PubMed ID: 23593113
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.