These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 2515892)
21. Homotropic effects in aspartate transcarbamoylase. What happens when the enzyme binds a single molecule of the bisubstrate analog N-phosphonacetyl-L-aspartate? Foote J; Schachman HK J Mol Biol; 1985 Nov; 186(1):175-84. PubMed ID: 3908690 [TBL] [Abstract][Full Text] [Related]
22. Glutamic acid 86 is important for positioning the 80's loop and arginine 54 at the active site of Escherichia coli aspartate transcarbamoylase and for the structural stabilization of the C1-C2 interface. Baker DP; Stebbins JW; DeSena E; Kantrowitz ER J Biol Chem; 1994 Oct; 269(40):24608-14. PubMed ID: 7929132 [TBL] [Abstract][Full Text] [Related]
23. L-aspartate association contributes to rate limitation and induction of the T-->R transition in Escherichia coli aspartate transcarbamoylase. Equilibrium exchanges and kinetic isotope effects with a Vmax-enhanced mutant, Asp-236-->Ala. Wedler FC; Ley BW; Lee BH; O'Leary MH; Kantrowitz ER J Biol Chem; 1995 Apr; 270(17):9725-33. PubMed ID: 7730350 [TBL] [Abstract][Full Text] [Related]
24. The contribution of threonine 55 to catalysis in aspartate transcarbamoylase. Waldrop GL; Turnbull JL; Parmentier LE; Lee S; O'Leary MH; Cleland WW; Schachman HK Biochemistry; 1992 Jul; 31(28):6592-7. PubMed ID: 1633171 [TBL] [Abstract][Full Text] [Related]
25. Regulatory kinetics of wheat-germ aspartate transcarbamoylase. Adaptation of the concerted model to account for complex kinetic effects of uridine 5'-monophosphate. Yon RJ Biochem J; 1984 Jul; 221(2):281-7. PubMed ID: 6477473 [TBL] [Abstract][Full Text] [Related]
27. Cooperative binding of the bisubstrate analog N-(phosphonacetyl)-L-aspartate to aspartate transcarbamoylase and the heterotropic effects of ATP and CTP. Newell JO; Markby DW; Schachman HK J Biol Chem; 1989 Feb; 264(5):2476-81. PubMed ID: 2644262 [TBL] [Abstract][Full Text] [Related]
28. Calorimetric analysis of aspartate transcarbamylase from Escherichia coli. Binding of substrates and substrate analogues to the native enzyme and catalytic subunit. Knier BL; Allewell NM Biochemistry; 1978 Mar; 17(5):784-90. PubMed ID: 343809 [No Abstract] [Full Text] [Related]
29. The conserved residues glutamate-37, aspartate-100, and arginine-269 are important for the structural stabilization of Escherichia coli aspartate transcarbamoylase. Baker DP; Kantrowitz ER Biochemistry; 1993 Sep; 32(38):10150-8. PubMed ID: 8104480 [TBL] [Abstract][Full Text] [Related]
30. Steady-state kinetics and isotope effects on the mutant catalytic trimer of aspartate transcarbamoylase containing the replacement of histidine 134 by alanine. Waldrop GL; Turnbull JL; Parmentier LE; O'Leary MH; Cleland WW; Schachman HK Biochemistry; 1992 Jul; 31(28):6585-91. PubMed ID: 1633170 [TBL] [Abstract][Full Text] [Related]
31. Ionization of amino acid residues involved in the catalytic mechanism of aspartate transcarbamoylase. Turnbull JL; Waldrop GL; Schachman HK Biochemistry; 1992 Jul; 31(28):6562-9. PubMed ID: 1633167 [TBL] [Abstract][Full Text] [Related]
32. The regulatory subunit of Escherichia coli aspartate carbamoyltransferase may influence homotropic cooperativity and heterotropic interactions by a direct interaction with the loop containing residues 230-245 of the catalytic chain. Newton CJ; Kantrowitz ER Proc Natl Acad Sci U S A; 1990 Mar; 87(6):2309-13. PubMed ID: 2179954 [TBL] [Abstract][Full Text] [Related]
33. Effects of replacement of active site residue glutamine 231 on activity and allosteric properties of aspartate transcarbamoylase. Peterson CB; Burman DL; Schachman HK Biochemistry; 1992 Sep; 31(36):8508-15. PubMed ID: 1390636 [TBL] [Abstract][Full Text] [Related]
34. The role of an active site histidine in the catalytic mechanism of aspartate transcarbamoylase. Kleanthous C; Wemmer DE; Schachman HK J Biol Chem; 1988 Sep; 263(26):13062-7. PubMed ID: 3047117 [TBL] [Abstract][Full Text] [Related]
35. Long range effects of amino acid substitutions in the catalytic chain of aspartate transcarbamoylase. Localized replacements in the carboxyl-terminal alpha-helix cause marked alterations in allosteric properties and intersubunit interactions. Peterson CB; Schachman HK J Biol Chem; 1992 Feb; 267(4):2443-50. PubMed ID: 1733944 [TBL] [Abstract][Full Text] [Related]
36. The catalytic mechanism of Escherichia coli aspartate carbamoyltransferase: a molecular modelling study. Gouaux JE; Krause KL; Lipscomb WN Biochem Biophys Res Commun; 1987 Feb; 142(3):893-7. PubMed ID: 3548720 [TBL] [Abstract][Full Text] [Related]
37. Heterotropic effectors promote a global conformational change in aspartate transcarbamoylase. Eisenstein E; Markby DW; Schachman HK Biochemistry; 1990 Apr; 29(15):3724-31. PubMed ID: 2187530 [TBL] [Abstract][Full Text] [Related]
38. Importance of domain closure for the catalysis and regulation of Escherichia coli aspartate transcarbamoylase. Macol CP; Tsuruta H; Kantrowitz ER J Biol Chem; 2002 Jul; 277(30):26852-7. PubMed ID: 12016227 [TBL] [Abstract][Full Text] [Related]
39. Replacement of Asp-162 by Ala prevents the cooperative transition by the substrates while enhancing the effect of the allosteric activator ATP on E. coli aspartate transcarbamoylase. Fetler L; Tauc P; Baker DP; Macol CP; Kantrowitz ER; Vachette P Protein Sci; 2002 May; 11(5):1074-81. PubMed ID: 11967364 [TBL] [Abstract][Full Text] [Related]
40. Structural consequences of the replacement of Glu239 by Gln in the catalytic chain of Escherichia coli aspartate transcarbamylase. Tauc P; Vachette P; Middleton SA; Kantrowitz ER J Mol Biol; 1990 Jul; 214(1):327-35. PubMed ID: 1973463 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]