These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 2515892)
41. Domain closure in the catalytic chains of Escherichia coli aspartate transcarbamoylase influences the kinetic mechanism. Lee BH; Ley BW; Kantrowitz ER; O'Leary MH; Wedler FC J Biol Chem; 1995 Jun; 270(26):15620-7. PubMed ID: 7797560 [TBL] [Abstract][Full Text] [Related]
42. Site-directed mutagenesis of Escherichia coli ornithine transcarbamoylase: role of arginine-57 in substrate binding and catalysis. Kuo LC; Miller AW; Lee S; Kozuma C Biochemistry; 1988 Nov; 27(24):8823-32. PubMed ID: 3072022 [TBL] [Abstract][Full Text] [Related]
43. Relationship between domain closure and binding, catalysis, and regulation in Escherichia coli aspartate transcarbamylase. Ladjimi MM; Middleton SA; Kelleher KS; Kantrowitz ER Biochemistry; 1988 Jan; 27(1):268-76. PubMed ID: 3280018 [TBL] [Abstract][Full Text] [Related]
44. A cis-proline to alanine mutant of E. coli aspartate transcarbamoylase: kinetic studies and three-dimensional crystal structures. Jin L; Stec B; Kantrowitz ER Biochemistry; 2000 Jul; 39(27):8058-66. PubMed ID: 10891088 [TBL] [Abstract][Full Text] [Related]
45. 13C isotope effect studies of Escherichia coli aspartate transcarbamylase in the presence of the bisubstrate analog N-(phosphonoacetyl)-L-aspartate. Parmentier LE; O'Leary MH; Schachman HK; Cleland WW Biochemistry; 1992 Jul; 31(28):6598-602. PubMed ID: 1633172 [TBL] [Abstract][Full Text] [Related]
46. The role of intersubunit interactions for the stabilization of the T state of Escherichia coli aspartate transcarbamoylase. Chan RS; Sakash JB; Macol CP; West JM; Tsuruta H; Kantrowitz ER J Biol Chem; 2002 Dec; 277(51):49755-60. PubMed ID: 12399459 [TBL] [Abstract][Full Text] [Related]
47. Kinetic mechanism of catalytic subunits (c3) of E. coli aspartate transcarbamylase at pH 7.0. Hsuanyu Y; Wedler FC Biochim Biophys Acta; 1988 Dec; 957(3):455-8. PubMed ID: 3058211 [TBL] [Abstract][Full Text] [Related]
48. A fluorescent probe-labeled Escherichia coli aspartate transcarbamoylase that monitors the allosteric conformational state. West JM; Tsuruta H; Kantrowitz ER J Biol Chem; 2004 Jan; 279(2):945-51. PubMed ID: 14581486 [TBL] [Abstract][Full Text] [Related]
49. 240s loop interactions stabilize the T state of Escherichia coli aspartate transcarbamoylase. Alam N; Stieglitz KA; Caban MD; Gourinath S; Tsuruta H; Kantrowitz ER J Biol Chem; 2004 May; 279(22):23302-10. PubMed ID: 15014067 [TBL] [Abstract][Full Text] [Related]
50. Bohr effect in Escherichia coli aspartate transcarbamylase. Linkages between substrate binding, proton binding, and conformational transitions. Allwell NM; Hofmann GE; Zaug A; Lennick M Biochemistry; 1979 Jul; 18(14):3008-15. PubMed ID: 37893 [No Abstract] [Full Text] [Related]
51. Aspartate transcarbamylase from the hyperthermophilic archaeon Pyrococcus abyssi: thermostability and 1.8A resolution crystal structure of the catalytic subunit complexed with the bisubstrate analogue N-phosphonacetyl-L-aspartate. Van Boxstael S; Cunin R; Khan S; Maes D J Mol Biol; 2003 Feb; 326(1):203-16. PubMed ID: 12547202 [TBL] [Abstract][Full Text] [Related]
52. Wheat-germ aspartate transcarbamoylase. Steady-state kinetics and stereochemistry of the binding site for L-aspartate. Grayson JE; Yon RJ; Butterworth PJ Biochem J; 1979 Nov; 183(2):247-54. PubMed ID: 534495 [TBL] [Abstract][Full Text] [Related]
53. Effect of amino acid substitutions on the catalytic and regulatory properties of aspartate transcarbamoylase. Robey EA; Wente SR; Markby DW; Flint A; Yang YR; Schachman HK Proc Natl Acad Sci U S A; 1986 Aug; 83(16):5934-8. PubMed ID: 3526345 [TBL] [Abstract][Full Text] [Related]
54. Discrimination between nucleotide effector responses of aspartate transcarbamoylase due to a single site substitution in the allosteric binding site. Corder TS; Wild JR J Biol Chem; 1989 May; 264(13):7425-30. PubMed ID: 2651439 [TBL] [Abstract][Full Text] [Related]
55. Different amino acid substitutions at the same position in the nucleotide-binding site of aspartate transcarbamoylase have diverse effects on the allosteric properties of the enzyme. Wente SR; Schachman HK J Biol Chem; 1991 Nov; 266(31):20833-9. PubMed ID: 1939134 [TBL] [Abstract][Full Text] [Related]
56. Probing the regulatory site of Escherichia coli aspartate transcarbamoylase by site-specific mutagenesis. Zhang Y; Kantrowitz ER Biochemistry; 1992 Jan; 31(3):792-8. PubMed ID: 1731936 [TBL] [Abstract][Full Text] [Related]
57. T-state inhibitors of E. coli aspartate transcarbamoylase that prevent the allosteric transition. Heng S; Stieglitz KA; Eldo J; Xia J; Cardia JP; Kantrowitz ER Biochemistry; 2006 Aug; 45(33):10062-71. PubMed ID: 16906764 [TBL] [Abstract][Full Text] [Related]
58. A 70-amino acid zinc-binding polypeptide from the regulatory chain of aspartate transcarbamoylase forms a stable complex with the catalytic subunit leading to markedly altered enzyme activity. Markby DW; Zhou BB; Schachman HK Proc Natl Acad Sci U S A; 1991 Dec; 88(23):10568-72. PubMed ID: 1961722 [TBL] [Abstract][Full Text] [Related]
60. Ligand interactions at the active site of aspartate transcarbamoylase from Escherichia coli. Dennis PR; Krishna MV; Di Gregorio M; Chan WW Biochemistry; 1986 Apr; 25(7):1605-11. PubMed ID: 3518791 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]