BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 25159051)

  • 1. Accuracy assessment of Tri-plane B-mode ultrasound for non-invasive 3D kinematic analysis of knee joints.
    Masum MA; Pickering M; Lambert A; Scarvell J; Smith P
    Biomed Eng Online; 2014 Aug; 13():122. PubMed ID: 25159051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precision analysis of a multi-slice ultrasound sensor for non-invasive 3D kinematic analysis of knee joints.
    Masum MA; Lambert AJ; Pickering MR; Scarvell JM; Smith PN
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1137-40. PubMed ID: 23366097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Image-assisted non-invasive and dynamic biomechanical analysis of human joints.
    Muhit AA; Pickering MR; Scarvell JM; Ward T; Smith PN
    Phys Med Biol; 2013 Jul; 58(13):4679-702. PubMed ID: 23774692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Method to Track 3D Knee Kinematics by Multi-Channel 3D-Tracked A-Mode Ultrasound.
    Niu K; Sluiter V; Lan B; Homminga J; Sprengers A; Verdonschot N
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New registration algorithm for determining 3D knee kinematics using CT and single-plane fluoroscopy with improved out-of-plane translation accuracy.
    Scarvell JM; Pickering MR; Smith PN
    J Orthop Res; 2010 Mar; 28(3):334-40. PubMed ID: 19798739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel multi-planar radiography method for three dimensional pose reconstruction of the patellofemoral and tibiofemoral joints after arthroplasty.
    Amiri S; Wilson DR; Masri BA; Sharma G; Anglin C
    J Biomech; 2011 Jun; 44(9):1757-64. PubMed ID: 21536291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of 3D ultrasound for image guidance.
    Iommi D; Hummel J; Figl ML
    PLoS One; 2020; 15(3):e0229441. PubMed ID: 32214326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of the 3D kinematic measurements obtained by single-plane 2D-3D image registration and RSA.
    Muhit AA; Pickering MR; Ward T; Scarvell JM; Smith PN
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6288-91. PubMed ID: 21097358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of statistical shape modeling and alternating interpolation-based model tracking technique for measuring knee kinematics
    Lu HY; Lin CC; Shih KS; Lu TW; Kuo MY; Li SY; Hsu HC
    PeerJ; 2023; 11():e15371. PubMed ID: 37334125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of automated statistical shape model based knee kinematics from biplane fluoroscopy.
    Baka N; Kaptein BL; Giphart JE; Staring M; de Bruijne M; Lelieveldt BP; Valstar E
    J Biomech; 2014 Jan; 47(1):122-9. PubMed ID: 24207131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of joint kinematics using a conventional clinical single-perspective flat-panel radiography system.
    Seslija P; Teeter MG; Yuan X; Naudie DD; Bourne RB; Macdonald SJ; Peters TM; Holdsworth DW
    Med Phys; 2012 Oct; 39(10):6090-103. PubMed ID: 23039648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EOS orthopaedic imaging system to study patellofemoral kinematics: assessment of uncertainty.
    Azmy C; Guérard S; Bonnet X; Gabrielli F; Skalli W
    Orthop Traumatol Surg Res; 2010 Feb; 96(1):28-36. PubMed ID: 20170853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A volumetric model-based 2D to 3D registration method for measuring kinematics of natural knees with single-plane fluoroscopy.
    Tsai TY; Lu TW; Chen CM; Kuo MY; Hsu HC
    Med Phys; 2010 Mar; 37(3):1273-84. PubMed ID: 20384265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 3D ultrasound scanning system for image guided liver interventions.
    Neshat H; Cool DW; Barker K; Gardi L; Kakani N; Fenster A
    Med Phys; 2013 Nov; 40(11):112903. PubMed ID: 24320470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient hybrid method for 3D to 2D medical image registration.
    Saadat S; Perriman D; Scarvell JM; Smith PN; Galvin CR; Lynch J; Pickering MR
    Int J Comput Assist Radiol Surg; 2022 Jul; 17(7):1313-1320. PubMed ID: 35435614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computer-aided tracking and motion analysis with ultrasound (CAT & MAUS) system for the description of hip joint kinematics.
    Jia R; Mellon S; Monk P; Murray D; Noble JA
    Int J Comput Assist Radiol Surg; 2016 Nov; 11(11):1965-1977. PubMed ID: 27311825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of a non-invasive fluoroscopic imaging technique for the measurement of dynamic knee joint motion.
    Li G; Van de Velde SK; Bingham JT
    J Biomech; 2008; 41(7):1616-22. PubMed ID: 18394629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of three-dimensional model-based tibio-femoral tracking during running.
    Anderst W; Zauel R; Bishop J; Demps E; Tashman S
    Med Eng Phys; 2009 Jan; 31(1):10-6. PubMed ID: 18434230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mobile Biplane X-Ray Imaging System for Measuring 3D Dynamic Joint Motion During Overground Gait.
    Guan S; Gray HA; Keynejad F; Pandy MG
    IEEE Trans Med Imaging; 2016 Jan; 35(1):326-36. PubMed ID: 26316030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ comparison of A-mode ultrasound tracking system and skin-mounted markers for measuring kinematics of the lower extremity.
    Niu K; Anijs T; Sluiter V; Homminga J; Sprengers A; Marra MA; Verdonschot N
    J Biomech; 2018 Apr; 72():134-143. PubMed ID: 29573792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.