BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 25159131)

  • 1. Influence of balancing-side occlusal interference on smoothness of working-side condylar movement and intra-articular space in chewing efforts.
    Yashiro K; Yamamoto K; Takada K; Murakami S; Uchiyama Y; Furukawa S
    J Oral Rehabil; 2015 Jan; 42(1):10-7. PubMed ID: 25159131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporomandibular joint articulations on working side during chewing in adult females with cross-bite and mandibular asymmetry.
    Yashiro K; Iwata A; Takada K; Murakami S; Uchiyama Y; Furukawa S
    J Oral Rehabil; 2015 Mar; 42(3):163-72. PubMed ID: 25545582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Postero-inferior condylar movement induced by artificial occlusal interference on the balancing side during fictive mastication in rabbits.
    Morita T; Hiraba K; Matsunaga T; Ito Y; Maruo H; Kurita K
    Arch Oral Biol; 2016 Jun; 66():66-76. PubMed ID: 26919724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Masticatory jaw movement optimization after introduction of occlusal interference.
    Yashiro K; Fukuda T; Takada K
    J Oral Rehabil; 2010 Mar; 37(3):163-70. PubMed ID: 19968764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Jaw kinematics during mastication after unilateral fractures of the mandibular condylar process.
    Throckmorton GS; Ellis E; Hayasaki H
    Am J Orthod Dentofacial Orthop; 2003 Dec; 124(6):695-707. PubMed ID: 14666085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic stereometry of the temporomandibular joint.
    Palla S; Gallo LM; Gössi D
    Orthod Craniofac Res; 2003; 6 Suppl 1():37-47. PubMed ID: 14606533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Condylar movements during mastication.
    Kuwahara T; Miyauchi S; Maruyama T
    J Osaka Univ Dent Sch; 1989 Dec; 29():87-102. PubMed ID: 2489635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Jaw-movement smoothness during empty chewing and gum chewing.
    Minami I; Akhter R; Luraschi J; Oogai K; Nemoto T; Peck CC; Murray GM
    Eur J Oral Sci; 2012 Jun; 120(3):195-200. PubMed ID: 22607335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smoothness of molar movement during gum chewing in children with primary dentition.
    Yamada-Ito C; Saitoh I; Yashiro K; Inada E; Maruyama T; Takada K; Iwasaki T; Hayasaki H; Yamasaki Y
    Cranio; 2013 Oct; 31(4):260-9. PubMed ID: 24308099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvements in smoothness of chewing cycles in adults with mandibular prognathism after surgery: a longitudinal study.
    Yashiro K; Takada K
    J Oral Rehabil; 2013 Jun; 40(6):418-28. PubMed ID: 23496087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of altered occlusal guidance on condylar displacement during submaximal clenching.
    Okano N; Baba K; Ohyama T
    J Oral Rehabil; 2005 Oct; 32(10):714-9. PubMed ID: 16159348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of bolus size and chewing side on temporomandibular joint intra-articular space during mastication.
    Jurt A; Lee JY; Gallo LM; Colombo V
    Med Eng Phys; 2020 Dec; 86():41-46. PubMed ID: 33261732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between masticatory cycle morphology and unilateral crossbite in the primary dentition.
    Sever E; Marion L; Ovsenik M
    Eur J Orthod; 2011 Dec; 33(6):620-7. PubMed ID: 21118909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motion of the human mandibular condyle during mastication.
    Miyawaki S; Tanimoto Y; Kawakami T; Sugimura M; Takano-Yamamoto T
    J Dent Res; 2001 Feb; 80(2):437-42. PubMed ID: 11332528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. XROMM analysis of tooth occlusion and temporomandibular joint kinematics during feeding in juvenile miniature pigs.
    Menegaz RA; Baier DB; Metzger KA; Herring SW; Brainerd EL
    J Exp Biol; 2015 Aug; 218(Pt 16):2573-84. PubMed ID: 26089531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Masticatory strains on osseous and ligamentous components of the temporomandibular joint in miniature pigs.
    Liu ZJ; Herring SW
    J Orofac Pain; 2000; 14(4):265-78. PubMed ID: 11203760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of condylar movements during mastication in stomatognathic dysfunction.
    Kuwahara T; Miyauchi S; Maruyama T
    Int J Prosthodont; 1990; 3(6):555-66. PubMed ID: 2083024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of temporomandibular joint function using MRI and jaw-tracking technologies--mechanics.
    Gallo LM
    Cells Tissues Organs; 2005; 180(1):54-68. PubMed ID: 16088134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Condylar motion in patients with reduced anterior disc displacement.
    Miyawaki S; Tanimoto Y; Inoue M; Sugawara Y; Fujiki T; Takano-Yamamoto T
    J Dent Res; 2001 May; 80(5):1430-5. PubMed ID: 11437214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unusual postero-inferior condylar movements that depend on the position of occlusal contact during fictive mastication in rabbits.
    Morita T; Hiraba K; Matsunaga T; Ito Y; Maruo H; Kurita K
    Arch Oral Biol; 2015 Mar; 60(3):370-84. PubMed ID: 25526621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.