These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 25159500)

  • 1. Investigation of the redox chemistry of anthraquinone derivatives using density functional theory.
    Bachman JE; Curtiss LA; Assary RS
    J Phys Chem A; 2014 Sep; 118(38):8852-60. PubMed ID: 25159500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A density functional theory study on the thermodynamic and dynamic properties of anthraquinone analogue cathode materials for rechargeable lithium ion batteries.
    Yang SJ; Qin XY; He R; Shen W; Li M; Zhao LB
    Phys Chem Chem Phys; 2017 May; 19(19):12480-12489. PubMed ID: 28470283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First-Principles Density Functional Theory Modeling of Li Binding: Thermodynamics and Redox Properties of Quinone Derivatives for Lithium-Ion Batteries.
    Kim KC; Liu T; Lee SW; Jang SS
    J Am Chem Soc; 2016 Feb; 138(7):2374-82. PubMed ID: 26824616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Physical Organic Chemistry Approach to Developing Cyclopropenium-Based Energy Storage Materials for Redox Flow Batteries.
    Walser-Kuntz R; Yan Y; Sigman M; Sanford MS
    Acc Chem Res; 2023 May; 56(10):1239-1250. PubMed ID: 37094181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poorly Soluble 2,6-Dimethoxy-9,10-anthraquinone Cathode for Lithium-Ion Batteries: The Role of Electrolyte Concentration.
    Yang J; Wang Z; Shi Y; Sun P; Xu Y
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7179-7185. PubMed ID: 31967452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical Evaluation of Diketopyrrolopyrrole Derivatives for Nonaqueous Redox Flow Batteries.
    Sharma S; Rathod S; Prakash Yadav S; Chakraborty A; Shukla AK; Aetukuri N; Patil S
    Chemistry; 2021 Aug; 27(47):12172-12180. PubMed ID: 34041796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Design Strategy for High-Redox-Potential and Poorly Soluble n-Type Phenazine Derivatives as Cathode Materials for Lithium Batteries.
    Miao L; Liu L; Zhang K; Chen J
    ChemSusChem; 2020 May; 13(9):2337-2344. PubMed ID: 31968154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretic calculation for understanding the oxidation process of 1,4-dimethoxybenzene-based compounds as redox shuttles for overcharge protection of lithium ion batteries.
    Li T; Xing L; Li W; Peng B; Xu M; Gu F; Hu S
    J Phys Chem A; 2011 May; 115(19):4988-94. PubMed ID: 21517049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anthraquinone and its derivatives as sustainable materials for electrochemical applications - a joint experimental and theoretical investigation of the redox potential in solution.
    Gallmetzer JM; Kröll S; Werner D; Wielend D; Irimia-Vladu M; Portenkirchner E; Sariciftci NS; Hofer TS
    Phys Chem Chem Phys; 2022 Jul; 24(26):16207-16219. PubMed ID: 35757985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Density functional theory-based prediction of the formation constants of complexes of ammonia in aqueous solution: indications of the role of relativistic effects in the solution chemistry of gold(I).
    Hancock RD; Bartolotti LJ
    Inorg Chem; 2005 Oct; 44(20):7175-83. PubMed ID: 16180881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward robust computational electrochemical predicting the environmental fate of organic pollutants.
    Sviatenko L; Isayev O; Gorb L; Hill F; Leszczynski J
    J Comput Chem; 2011 Jul; 32(10):2195-203. PubMed ID: 21541957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailored Design of Electrochemically Degradable Anthraquinone Functionality toward Organic Cathodes.
    Go CY; Jang SS; Kim KC
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):35729-35738. PubMed ID: 34288644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligand Field Effects on the Aqueous Ru(III)/Ru(II) Redox Couple from an All-Atom Density Functional Theory Perspective.
    Ayala R; Sprik M
    J Chem Theory Comput; 2006 Sep; 2(5):1403-15. PubMed ID: 26626848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anthraquinone derivatives as electron-acceptors with liquid crystalline properties.
    Murschell AE; Kan WH; Thangadurai V; Sutherland TC
    Phys Chem Chem Phys; 2012 Apr; 14(13):4626-34. PubMed ID: 22361782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solvation of anthraquinone and TEMPO redox-active species in acetonitrile using a polarizable force field.
    Berthin R; Serva A; Reeves KG; Heid E; Schröder C; Salanne M
    J Chem Phys; 2021 Aug; 155(7):074504. PubMed ID: 34418918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Systematic Study on the Redox Potentials of Phenazine-Derivatives in Aqueous Media: A Combined Computational and Experimental Work.
    de la Cruz C; Sanz R; Suárez A; Ventosa E; Marcilla R; Mavrandonakis A
    ChemSusChem; 2023 Apr; 16(8):e202201984. PubMed ID: 36753400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoregulated transmembrane charge separation by linked spiropyran-anthraquinone molecules.
    Zhu L; Khairutdinov RF; Cape JL; Hurst JK
    J Am Chem Soc; 2006 Jan; 128(3):825-35. PubMed ID: 16417372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quinone Based Materials as Renewable High Energy Density Cathode Materials for Rechargeable Magnesium Batteries.
    Bitenc J; Pavčnik T; Košir U; Pirnat K
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 31973193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anthraquinone-based discotic liquid crystals.
    Murschell AE; Sutherland TC
    Langmuir; 2010 Aug; 26(15):12859-66. PubMed ID: 20590112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.