BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 25159856)

  • 1. Pyrene-based quantitative detection of the 5-formylcytosine loci symmetry in the CpG duplex content during TET-dependent demethylation.
    Xu L; Chen YC; Chong J; Fin A; McCoy LS; Xu J; Zhang C; Wang D
    Angew Chem Int Ed Engl; 2014 Oct; 53(42):11223-7. PubMed ID: 25159856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural insight into substrate preference for TET-mediated oxidation.
    Hu L; Lu J; Cheng J; Rao Q; Li Z; Hou H; Lou Z; Zhang L; Li W; Gong W; Liu M; Sun C; Yin X; Li J; Tan X; Wang P; Wang Y; Fang D; Cui Q; Yang P; He C; Jiang H; Luo C; Xu Y
    Nature; 2015 Nov; 527(7576):118-22. PubMed ID: 26524525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine.
    Ito S; Shen L; Dai Q; Wu SC; Collins LB; Swenberg JA; He C; Zhang Y
    Science; 2011 Sep; 333(6047):1300-3. PubMed ID: 21778364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and Function of TET Enzymes.
    Yin X; Hu L; Xu Y
    Adv Exp Med Biol; 2022; 1389():239-267. PubMed ID: 36350513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The hypomethylating agent Decitabine causes a paradoxical increase in 5-hydroxymethylcytosine in human leukemia cells.
    Chowdhury B; McGovern A; Cui Y; Choudhury SR; Cho IH; Cooper B; Chevassut T; Lossie AC; Irudayaraj J
    Sci Rep; 2015 Apr; 5():9281. PubMed ID: 25901663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinguishing Active Versus Passive DNA Demethylation Using Illumina MethylationEPIC BeadChip Microarrays.
    Tiedemann RL; Eden HE; Huang Z; Robertson KD; Rothbart SB
    Methods Mol Biol; 2021; 2272():97-140. PubMed ID: 34009611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TET-TDG Active DNA Demethylation at CpG and Non-CpG Sites.
    DeNizio JE; Dow BJ; Serrano JC; Ghanty U; Drohat AC; Kohli RM
    J Mol Biol; 2021 Apr; 433(8):166877. PubMed ID: 33561435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A TET homologue protein from Coprinopsis cinerea (CcTET) that biochemically converts 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine.
    Zhang L; Chen W; Iyer LM; Hu J; Wang G; Fu Y; Yu M; Dai Q; Aravind L; He C
    J Am Chem Soc; 2014 Apr; 136(13):4801-4. PubMed ID: 24655109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic DNA oxidation: mechanisms and biological significance.
    Xu GL; Walsh CP
    BMB Rep; 2014 Nov; 47(11):609-18. PubMed ID: 25341925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenetic modifications in DNA could mimic oxidative DNA damage: A double-edged sword.
    Ito S; Kuraoka I
    DNA Repair (Amst); 2015 Aug; 32():52-57. PubMed ID: 25956859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of a Naegleria Tet-like dioxygenase in complex with 5-methylcytosine DNA.
    Hashimoto H; Pais JE; Zhang X; Saleh L; Fu ZQ; Dai N; Corrêa IR; Zheng Y; Cheng X
    Nature; 2014 Feb; 506(7488):391-5. PubMed ID: 24390346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation.
    Wu H; Zhang Y
    Genes Dev; 2011 Dec; 25(23):2436-52. PubMed ID: 22156206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PRDM14 promotes active DNA demethylation through the ten-eleven translocation (TET)-mediated base excision repair pathway in embryonic stem cells.
    Okashita N; Kumaki Y; Ebi K; Nishi M; Okamoto Y; Nakayama M; Hashimoto S; Nakamura T; Sugasawa K; Kojima N; Takada T; Okano M; Seki Y
    Development; 2014 Jan; 141(2):269-80. PubMed ID: 24335252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA repair enzymes ALKBH2, ALKBH3, and AlkB oxidize 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine in vitro.
    Bian K; Lenz SAP; Tang Q; Chen F; Qi R; Jost M; Drennan CL; Essigmann JM; Wetmore SD; Li D
    Nucleic Acids Res; 2019 Jun; 47(11):5522-5529. PubMed ID: 31114894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct and stage-specific contributions of TET1 and TET2 to stepwise cytosine oxidation in the transition from naive to primed pluripotency.
    Mulholland CB; Traube FR; Ugur E; Parsa E; Eckl EM; Schönung M; Modic M; Bartoschek MD; Stolz P; Ryan J; Carell T; Leonhardt H; Bultmann S
    Sci Rep; 2020 Jul; 10(1):12066. PubMed ID: 32694513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Tet-induced oxidation products of 5-methylcytosine on Dnmt1- and DNMT3a-mediated cytosine methylation.
    Ji D; Lin K; Song J; Wang Y
    Mol Biosyst; 2014 Jul; 10(7):1749-52. PubMed ID: 24789765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification of TET Proteins.
    Huang Z; Yu J; Johnson J; Jin SG; Pfeifer GP
    Methods Mol Biol; 2021; 2272():225-237. PubMed ID: 34009617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical reconstitution of TET1-TDG-BER-dependent active DNA demethylation reveals a highly coordinated mechanism.
    Weber AR; Krawczyk C; Robertson AB; Kuśnierczyk A; Vågbø CB; Schuermann D; Klungland A; Schär P
    Nat Commun; 2016 Mar; 7():10806. PubMed ID: 26932196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and Function of TET Enzymes.
    Yin X; Xu Y
    Adv Exp Med Biol; 2016; 945():275-302. PubMed ID: 27826843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methylation-assisted bisulfite sequencing to simultaneously map 5fC and 5caC on a genome-wide scale for DNA demethylation analysis.
    Neri F; Incarnato D; Krepelova A; Parlato C; Oliviero S
    Nat Protoc; 2016 Jul; 11(7):1191-205. PubMed ID: 27281647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.