These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 2515993)

  • 21. The cloning and functional characterization of the nifH gene of Rhodospirillum rubrum.
    Lehman LJ; Fitzmaurice WP; Roberts GP
    Gene; 1990 Oct; 95(1):143-7. PubMed ID: 1979299
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Presence of a second mechanism for the posttranslational regulation of nitrogenase activity in Azospirillum brasilense in response to ammonium.
    Zhang Y; Burris RH; Ludden PW; Roberts GP
    J Bacteriol; 1996 May; 178(10):2948-53. PubMed ID: 8631686
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mutagenesis and functional characterization of the glnB, glnA, and nifA genes from the photosynthetic bacterium Rhodospirillum rubrum.
    Zhang Y; Pohlmann EL; Ludden PW; Roberts GP
    J Bacteriol; 2000 Feb; 182(4):983-92. PubMed ID: 10648524
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reversible ADP-ribosylation of dinitrogenase reductase in a nifD- mutant of Rhodospirillum rubrum.
    Ludden PW; Lehman L; Roberts GP
    J Bacteriol; 1989 Sep; 171(9):5210-1. PubMed ID: 2504701
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cloning, sequencing and transcriptional regulation of the draT and draG genes of Azospirillum lipoferum FS.
    Inoue A; Shigematsu T; Hidaka M; Masaki H; Uozumi T
    Gene; 1996 Apr; 170(1):101-6. PubMed ID: 8621068
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Posttranslational regulatory system for nitrogenase activity in Azospirillum spp.
    Fu HA; Hartmann A; Lowery RG; Fitzmaurice WP; Roberts GP; Burris RH
    J Bacteriol; 1989 Sep; 171(9):4679-85. PubMed ID: 2504694
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The nitrogenase regulatory enzyme dinitrogenase reductase ADP-ribosyltransferase (DraT) is activated by direct interaction with the signal transduction protein GlnB.
    Moure VR; Danyal K; Yang ZY; Wendroth S; Müller-Santos M; Pedrosa FO; Scarduelli M; Gerhardt EC; Huergo LF; Souza EM; Seefeldt LC
    J Bacteriol; 2013 Jan; 195(2):279-86. PubMed ID: 23144248
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NAD-, NMN-, and NADP-dependent modification of dinitrogenase reductases from Rhodospirillum rubrum and Azotobacter vinelandii.
    Ponnuraj RK; Rubio LM; Grunwald SK; Ludden PW
    FEBS Lett; 2005 Oct; 579(25):5751-8. PubMed ID: 16225869
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glycine 100 in the dinitrogenase reductase of Rhodospirillum rubrum is required for nitrogen fixation but not for ADP-ribosylation.
    Lehman LJ; Roberts GP
    J Bacteriol; 1991 Oct; 173(19):6159-61. PubMed ID: 1917849
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of an ntrBC mutation on the posttranslational regulation of nitrogenase activity in Rhodospirillum rubrum.
    Zhang Y; Cummings AD; Burris RH; Ludden PW; Roberts GP
    J Bacteriol; 1995 Sep; 177(18):5322-6. PubMed ID: 7665521
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reversible membrane association of dinitrogenase reductase activating glycohydrolase in the regulation of nitrogenase activity in Rhodospirillum rubrum; dependence on GlnJ and AmtB1.
    Wang H; Franke CC; Nordlund S; Norén A
    FEMS Microbiol Lett; 2005 Dec; 253(2):273-9. PubMed ID: 16243452
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reversible ADP-ribosylation as a mechanism of enzyme regulation in procaryotes.
    Ludden PW
    Mol Cell Biochem; 1994 Sep; 138(1-2):123-9. PubMed ID: 7898454
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mutations affecting nitrogenase switch-off in Rhodobacter capsulatus.
    Hallenbeck PC
    Biochim Biophys Acta; 1992 Jan; 1118(2):161-8. PubMed ID: 1730034
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional characterization of three GlnB homologs in the photosynthetic bacterium Rhodospirillum rubrum: roles in sensing ammonium and energy status.
    Zhang Y; Pohlmann EL; Ludden PW; Roberts GP
    J Bacteriol; 2001 Nov; 183(21):6159-68. PubMed ID: 11591658
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of nitrogenase activity by reversible ADP ribosylation.
    Ludden PW; Roberts GP
    Curr Top Cell Regul; 1989; 30():23-56. PubMed ID: 2575970
    [No Abstract]   [Full Text] [Related]  

  • 36. Metabolic regulation of nitrogen fixation in Rhodospirillum rubrum.
    Wang H; Norén A
    Biochem Soc Trans; 2006 Feb; 34(Pt 1):160-1. PubMed ID: 16417510
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Posttranslational modification of dinitrogenase reductase in Rhodospirillum rubrum treated with fluoroacetate.
    Akentieva N
    World J Microbiol Biotechnol; 2018 Nov; 34(12):184. PubMed ID: 30488133
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ADP-ribosylation, a mechanism regulating nitrogenase activity.
    Nordlund S; Högbom M
    FEBS J; 2013 Aug; 280(15):3484-90. PubMed ID: 23574616
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of over-expression of the regulatory enzymes DraT and DraG on the ammonium-dependent post-translational regulation of nitrogenase reductase in Azospirillum brasilense.
    Huergo LF; Souza EM; Steffens MB; Yates MG; Pedrosa FO; Chubatsu LS
    Arch Microbiol; 2005 Mar; 183(3):209-17. PubMed ID: 15723223
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro interactions between the PII proteins and the nitrogenase regulatory enzymes dinitrogenase reductase ADP-ribosyltransferase (DraT) and dinitrogenase reductase-activating glycohydrolase (DraG) in Azospirillum brasilense.
    Huergo LF; Merrick M; Monteiro RA; Chubatsu LS; Steffens MB; Pedrosa FO; Souza EM
    J Biol Chem; 2009 Mar; 284(11):6674-82. PubMed ID: 19131333
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.