These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Biological Cr(VI) removal using bio-filters and constructed wetlands. Michailides MK; Sultana MY; Tekerlekopoulou AG; Akratos CS; Vayenas DV Water Sci Technol; 2013; 68(10):2228-33. PubMed ID: 24292472 [TBL] [Abstract][Full Text] [Related]
6. Chromium(VI) bioreduction and removal by Enterobacter sp. SL grown with waste molasses as carbon source: Impact of operational conditions. Sun Y; Lan J; Du Y; Guo L; Du D; Chen S; Ye H; Zhang TC Bioresour Technol; 2020 Apr; 302():121974. PubMed ID: 31981808 [TBL] [Abstract][Full Text] [Related]
7. Chromium species behaviour in the activated sludge process. Stasinakis AS; Thomaidis NS; Mamais D; Karivali M; Lekkas TD Chemosphere; 2003 Aug; 52(6):1059-67. PubMed ID: 12781239 [TBL] [Abstract][Full Text] [Related]
8. A study on the reduction of hexavalent chromium in aqueous solutions by vinasse. Altundogan HS; Ozer A; Tümen F Environ Technol; 2004 Nov; 25(11):1257-63. PubMed ID: 15617440 [TBL] [Abstract][Full Text] [Related]
10. Role of polyphenol in sugarcane molasses as a nutrient for hexavalent chromium bioremediation using bacteria. Ikegami K; Hirose Y; Sakashita H; Maruyama R; Sugiyama T Chemosphere; 2020 Jul; 250():126267. PubMed ID: 32114344 [TBL] [Abstract][Full Text] [Related]
11. Modelling Cr(VI) removal by a combined carbon-activated sludge system. Orozco AM; Contreras EM; Zaritzky NE J Hazard Mater; 2008 Jan; 150(1):46-52. PubMed ID: 17543453 [TBL] [Abstract][Full Text] [Related]
12. About the performance of Sphaerotilus natans to reduce hexavalent chromium in batch and continuous reactors. Caravelli AH; Zaritzky NE J Hazard Mater; 2009 Sep; 168(2-3):1346-58. PubMed ID: 19345486 [TBL] [Abstract][Full Text] [Related]
13. Dual bioremediation of phenol and Cr(VI) by mixed microbial cultures in the presence of molasses. Kiliç NK; Dönmez G Water Sci Technol; 2017 Jun; 75(12):2883-2890. PubMed ID: 28659528 [TBL] [Abstract][Full Text] [Related]
14. The effect of carbon source on microbial community structure and Cr(VI) reduction rate. Tekerlekopoulou AG; Tsiamis G; Dermou E; Siozios S; Bourtzis K; Vayenas DV Biotechnol Bioeng; 2010 Oct; 107(3):478-87. PubMed ID: 20552669 [TBL] [Abstract][Full Text] [Related]
15. Preliminary studies on continuous chromium(VI) biological removal from wastewater by anaerobic-aerobic activated sludge process. Chen Y; Gu G Bioresour Technol; 2005 Oct; 96(15):1713-21. PubMed ID: 16023575 [TBL] [Abstract][Full Text] [Related]
16. Cr(Vi) reduction capacity of activated sludge as affected by nitrogen and carbon sources, microbial acclimation and cell multiplication. Ferro Orozco AM; Contreras EM; Zaritzky NE J Hazard Mater; 2010 Apr; 176(1-3):657-65. PubMed ID: 20004056 [TBL] [Abstract][Full Text] [Related]
17. Hexavalent chromium reduction by Acinetobacter haemolyticus isolated from heavy-metal contaminated wastewater. Zakaria ZA; Zakaria Z; Surif S; Ahmad WA J Hazard Mater; 2007 Jul; 146(1-2):30-8. PubMed ID: 17188812 [TBL] [Abstract][Full Text] [Related]
18. Microbial culture dynamics and chromium (VI) removal in packed-column microcosm reactors. Molokwane PE; Nkhalambayausi-Chirwa EM Water Sci Technol; 2009; 60(2):381-8. PubMed ID: 19633380 [TBL] [Abstract][Full Text] [Related]
19. Batch and continuous flow studies of adsorptive removal of Cr(VI) by adapted bacterial consortia immobilized in alginate beads. Samuel J; Pulimi M; Paul ML; Maurya A; Chandrasekaran N; Mukherjee A Bioresour Technol; 2013 Jan; 128():423-30. PubMed ID: 23201524 [TBL] [Abstract][Full Text] [Related]
20. An integrated approach to remove Cr(VI) using immobilized Chlorella minutissima grown in nutrient rich sewage wastewater. Singh SK; Bansal A; Jha MK; Dey A Bioresour Technol; 2012 Jan; 104():257-65. PubMed ID: 22154744 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]