BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 25160598)

  • 1. New treatments for diabetic retinopathy.
    Das A; Stroud S; Mehta A; Rangasamy S
    Diabetes Obes Metab; 2015 Mar; 17(3):219-30. PubMed ID: 25160598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protective factors in diabetic retinopathy: focus on blood-retinal barrier.
    Zhang C; Wang H; Nie J; Wang F
    Discov Med; 2014 Sep; 18(98):105-12. PubMed ID: 25227751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TNFSF15 Inhibits Blood Retinal Barrier Breakdown Induced by Diabetes.
    Jiang F; Chen Q; Huang L; Wang Y; Zhang Z; Meng X; Liu Y; Mao C; Zheng F; Zhang J; Yan H
    Int J Mol Sci; 2016 Apr; 17(5):. PubMed ID: 27120595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel pharmacotherapies in diabetic retinopathy: Current status and what's in the horizon?
    Das A; McGuire PG; Monickaraj F
    Indian J Ophthalmol; 2016 Jan; 64(1):4-13. PubMed ID: 26953018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relation between expression of vascular endothelial growth factor and breakdown of the blood-retinal barrier in diabetic rat retinas.
    Murata T; Nakagawa K; Khalil A; Ishibashi T; Inomata H; Sueishi K
    Lab Invest; 1996 Apr; 74(4):819-25. PubMed ID: 8606491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vascular endothelial growth factor and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives.
    Caldwell RB; Bartoli M; Behzadian MA; El-Remessy AE; Al-Shabrawey M; Platt DH; Caldwell RW
    Diabetes Metab Res Rev; 2003; 19(6):442-55. PubMed ID: 14648803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of phospholipases A2 in diabetic retinopathy: in vitro and in vivo studies.
    Lupo G; Motta C; Giurdanella G; Anfuso CD; Alberghina M; Drago F; Salomone S; Bucolo C
    Biochem Pharmacol; 2013 Dec; 86(11):1603-13. PubMed ID: 24076420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Management of proliferative diabetic retinopathy.
    Gündüz K; Bakri SJ
    Compr Ophthalmol Update; 2007; 8(5):245-56. PubMed ID: 18201511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene therapy for diabetic retinopathy: Are we ready to make the leap from bench to bedside?
    Wang JH; Ling D; Tu L; van Wijngaarden P; Dusting GJ; Liu GS
    Pharmacol Ther; 2017 May; 173():1-18. PubMed ID: 28132907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Erythropoietin as a retinal angiogenic factor in proliferative diabetic retinopathy.
    Watanabe D; Suzuma K; Matsui S; Kurimoto M; Kiryu J; Kita M; Suzuma I; Ohashi H; Ojima T; Murakami T; Kobayashi T; Masuda S; Nagao M; Yoshimura N; Takagi H
    N Engl J Med; 2005 Aug; 353(8):782-92. PubMed ID: 16120858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacological approach to diabetic retinopathy.
    De La Cruz JP; González-Correa JA; Guerrero A; de la Cuesta FS
    Diabetes Metab Res Rev; 2004; 20(2):91-113. PubMed ID: 15037985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucocorticoid regulation of endothelial cell tight junction gene expression: novel treatments for diabetic retinopathy.
    Felinski EA; Antonetti DA
    Curr Eye Res; 2005 Nov; 30(11):949-57. PubMed ID: 16282129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insulin analogues may accelerate progression of diabetic retinopathy after impairment of inner blood-retinal barrier.
    Kaya A; Kar T; Aksoy Y; Özalper V; Başbuğ B
    Med Hypotheses; 2013 Dec; 81(6):1012-4. PubMed ID: 24090664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aquaporin 4 knockdown exacerbates streptozotocin-induced diabetic retinopathy through aggravating inflammatory response.
    Cui B; Sun JH; Xiang FF; Liu L; Li WJ
    Exp Eye Res; 2012 May; 98():37-43. PubMed ID: 22449442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of memantine on neuroretinal function and retinal vascular changes of streptozotocin-induced diabetic rats.
    Kusari J; Zhou S; Padillo E; Clarke KG; Gil DW
    Invest Ophthalmol Vis Sci; 2007 Nov; 48(11):5152-9. PubMed ID: 17962468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression of protein kinase C-ζ attenuates vascular leakage via prevention of tight junction protein decrease in diabetic retinopathy.
    Song HB; Jun HO; Kim JH; Yu YS; Kim KW; Kim JH
    Biochem Biophys Res Commun; 2014 Jan; 444(1):63-8. PubMed ID: 24434146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decreased angiogenin concentration in vitreous and serum in proliferative diabetic retinopathy.
    Marek N; Raczyńska K; Siebert J; Myśliwiec M; Zorena K; Myśliwska J; Reiwer-Gostomska M; Trzonkowski P
    Microvasc Res; 2011 Jul; 82(1):1-5. PubMed ID: 21539846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanisms of vascular permeability in diabetic retinopathy.
    Antonetti DA; Lieth E; Barber AJ; Gardner TW
    Semin Ophthalmol; 1999 Dec; 14(4):240-8. PubMed ID: 10758225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predominant cone photoreceptor dysfunction in a hyperglycaemic model of non-proliferative diabetic retinopathy.
    Alvarez Y; Chen K; Reynolds AL; Waghorne N; O'Connor JJ; Kennedy BN
    Dis Model Mech; 2010; 3(3-4):236-45. PubMed ID: 20142328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of vitreoretinal VEGF elevation and blood-retinal barrier breakdown in streptozotocin-induced diabetic rats by brimonidine.
    Kusari J; Zhou SX; Padillo E; Clarke KG; Gil DW
    Invest Ophthalmol Vis Sci; 2010 Feb; 51(2):1044-51. PubMed ID: 19710406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.