These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 25160623)

  • 41. OxyR and SoxRS regulation of fur.
    Zheng M; Doan B; Schneider TD; Storz G
    J Bacteriol; 1999 Aug; 181(15):4639-43. PubMed ID: 10419964
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of nitric oxide on iron or hemoprotein-catalyzed oxidative reactions.
    Jourd'heuil D; Miles AM; Grisham MB
    Methods Enzymol; 1999; 301():437-44. PubMed ID: 9919592
    [No Abstract]   [Full Text] [Related]  

  • 43. Characterization of the DNA-Mediated Oxidation of Dps, A Bacterial Ferritin.
    Arnold AR; Zhou A; Barton JK
    J Am Chem Soc; 2016 Sep; 138(35):11290-8. PubMed ID: 27571139
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Iron center, substrate recognition and mechanism of peptide deformylase.
    Becker A; Schlichting I; Kabsch W; Groche D; Schultz S; Wagner AF
    Nat Struct Biol; 1998 Dec; 5(12):1053-8. PubMed ID: 9846875
    [TBL] [Abstract][Full Text] [Related]  

  • 45. trans-Dienelactone hydrolase from Pseudomonas reinekei MT1, a novel zinc-dependent hydrolase.
    Cámara B; Marín M; Schlömann M; Hecht HJ; Junca H; Pieper DH
    Biochem Biophys Res Commun; 2008 Nov; 376(2):423-8. PubMed ID: 18789896
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The YaaA protein of the Escherichia coli OxyR regulon lessens hydrogen peroxide toxicity by diminishing the amount of intracellular unincorporated iron.
    Liu Y; Bauer SC; Imlay JA
    J Bacteriol; 2011 May; 193(9):2186-96. PubMed ID: 21378183
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Manganese Is Required for the Rapid Recovery of DNA Synthesis following Oxidative Challenge in
    Hutfilz CR; Wang NE; Hoff CA; Lee JA; Hackert BJ; Courcelle J; Courcelle CT
    J Bacteriol; 2019 Dec; 201(24):. PubMed ID: 31570529
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biochemical characterization of the structural Zn2+ site in the Bacillus subtilis peroxide sensor PerR.
    Lee JW; Helmann JD
    J Biol Chem; 2006 Aug; 281(33):23567-78. PubMed ID: 16766519
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Novel antioxidant role of alcohol dehydrogenase E from Escherichia coli.
    Echave P; Tamarit J; Cabiscol E; Ros J
    J Biol Chem; 2003 Aug; 278(32):30193-8. PubMed ID: 12783863
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Exploring the microbial metalloproteome using MIRAGE.
    Sevcenco AM; Pinkse MW; Wolterbeek HT; Verhaert PD; Hagen WR; Hagedoorn PL
    Metallomics; 2011 Dec; 3(12):1324-30. PubMed ID: 22094925
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The ferric uptake regulation (Fur) repressor is a zinc metalloprotein.
    Althaus EW; Outten CE; Olson KE; Cao H; O'Halloran TV
    Biochemistry; 1999 May; 38(20):6559-69. PubMed ID: 10350474
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Roles of manganese and iron in the regulation of the biosynthesis of manganese-superoxide dismutase in Escherichia coli.
    Hassan HM; Schrum LW
    FEMS Microbiol Rev; 1994 Aug; 14(4):315-23. PubMed ID: 7917419
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Active site metal ion in UDP-3-O-((R)-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) switches between Fe(II) and Zn(II) depending on cellular conditions.
    Gattis SG; Hernick M; Fierke CA
    J Biol Chem; 2010 Oct; 285(44):33788-96. PubMed ID: 20709752
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Negative cooperativity and half of the sites reactivity. Alkaline phosphatases of Escherichia coli with Zn2+, Co2+, Cd2+, Mn2+, and Cu2+ in the active sites.
    Chappelet-Tordo D; Iwatsubo M; Lazdunski M
    Biochemistry; 1974 Aug; 13(18):3754-62. PubMed ID: 4604809
    [No Abstract]   [Full Text] [Related]  

  • 55. Zinc- and iron-dependent cytosolic metallo-beta-lactamase domain proteins exhibit similar zinc-binding affinities, independent of an atypical glutamate at the metal-binding site.
    Schilling O; Vogel A; Kostelecky B; Natal da Luz H; Spemann D; Späth B; Marchfelder A; Tröger W; Meyer-Klaucke W
    Biochem J; 2005 Jan; 385(Pt 1):145-53. PubMed ID: 15324305
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Escherichia coli small protein MntS and exporter MntP optimize the intracellular concentration of manganese.
    Martin JE; Waters LS; Storz G; Imlay JA
    PLoS Genet; 2015 Mar; 11(3):e1004977. PubMed ID: 25774656
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Insights into the role of the metal binding site in methionine-R-sulfoxide reductases B.
    Olry A; Boschi-Muller S; Yu H; Burnel D; Branlant G
    Protein Sci; 2005 Nov; 14(11):2828-37. PubMed ID: 16251365
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Femtomolar Zn(II) affinity in a peptide-based ligand designed to model thiolate-rich metalloprotein active sites.
    Petros AK; Reddi AR; Kennedy ML; Hyslop AG; Gibney BR
    Inorg Chem; 2006 Dec; 45(25):9941-58. PubMed ID: 17140191
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Escherichia coli btuE gene, encodes a glutathione peroxidase that is induced under oxidative stress conditions.
    Arenas FA; Díaz WA; Leal CA; Pérez-Donoso JM; Imlay JA; Vásquez CC
    Biochem Biophys Res Commun; 2010 Aug; 398(4):690-4. PubMed ID: 20621065
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Corroborative models of the cobalt(II) inhibited Fe/Mn superoxide dismutases.
    Scarpellini M; Wu AJ; Kampf JW; Pecoraro VL
    Inorg Chem; 2005 Jul; 44(14):5001-10. PubMed ID: 15998028
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.