These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 25160659)
1. Arbuscular mycorrhizae improve low temperature tolerance in cucumber via alterations in H2O2 accumulation and ATPase activity. Liu A; Chen S; Chang R; Liu D; Chen H; Ahammed GJ; Lin X; He C J Plant Res; 2014 Nov; 127(6):775-85. PubMed ID: 25160659 [TBL] [Abstract][Full Text] [Related]
2. The possible involvement of salicylic acid and hydrogen peroxide in the systemic promotion of phenolic biosynthesis in clover roots colonized by arbuscular mycorrhizal fungus. Zhu H; Zhang R; Chen W; Gu Z; Xie X; Zhao H; Yao Q J Plant Physiol; 2015 Apr; 178():27-34. PubMed ID: 25765360 [TBL] [Abstract][Full Text] [Related]
3. Root respiratory burst oxidase homologue-dependent H2O2 production confers salt tolerance on a grafted cucumber by controlling Na+ exclusion and stomatal closure. Niu M; Huang Y; Sun S; Sun J; Cao H; Shabala S; Bie Z J Exp Bot; 2018 Jun; 69(14):3465-3476. PubMed ID: 29145593 [TBL] [Abstract][Full Text] [Related]
4. Systemic inhibition of arbuscular mycorrhiza development by root exudates of cucumber plants colonized by Glomus mosseae. Vierheilig H; Lerat S; Piché Y Mycorrhiza; 2003 Jun; 13(3):167-70. PubMed ID: 12836085 [TBL] [Abstract][Full Text] [Related]
5. Role of Melatonin in Arbuscular Mycorrhizal Fungi-Induced Resistance to Fusarium Wilt in Cucumber. Ahammed GJ; Mao Q; Yan Y; Wu M; Wang Y; Ren J; Guo P; Liu A; Chen S Phytopathology; 2020 May; 110(5):999-1009. PubMed ID: 32096697 [TBL] [Abstract][Full Text] [Related]
7. Modification of plasma membrane proton pumps in cucumber roots as an adaptation mechanism to salt stress. Janicka-Russak M; Kabała K; Wdowikowska A; Kłobus G J Plant Physiol; 2013 Jul; 170(10):915-22. PubMed ID: 23499455 [TBL] [Abstract][Full Text] [Related]
8. Interactions between Pseudomonas putida UW4 and Gigaspora rosea BEG9 and their consequences for the growth of cucumber under salt-stress conditions. Gamalero E; Berta G; Massa N; Glick BR; Lingua G J Appl Microbiol; 2010 Jan; 108(1):236-45. PubMed ID: 19566717 [TBL] [Abstract][Full Text] [Related]
9. [Effects of arbuscular mycorrhizal fungi on the growth and fruit quality of plastic greenhouse Cucumis sativus L]. Lü G; Chen G; Qi G; Gao Z Ying Yong Sheng Tai Xue Bao; 2006 Dec; 17(12):2352-6. PubMed ID: 17330479 [TBL] [Abstract][Full Text] [Related]
10. Arbuscular mycorrhizal fungi improve growth and tolerance of Zhou Y; Wei M; Li Y; Tang M; Zhang H Int J Phytoremediation; 2023; 25(14):1967-1978. PubMed ID: 37203166 [TBL] [Abstract][Full Text] [Related]
11. Response of plasma membrane H(+)-ATPase to low temperature in cucumber roots. Janicka-Russak M; Kabała K; Wdowikowska A; Kłobus G J Plant Res; 2012 Mar; 125(2):291-300. PubMed ID: 21638005 [TBL] [Abstract][Full Text] [Related]
12. [Effects of arbuscular mycorrhizal fungi inoculation on non-structural carbohydrate contents and C:N:P stoichiometry of Li YL; Jin ZX; Luo GY; Chen C; Sun ZS; Wang XY Ying Yong Sheng Tai Xue Bao; 2022 Apr; 33(4):963-971. PubMed ID: 35543048 [TBL] [Abstract][Full Text] [Related]
13. Inoculation of drought-stressed strawberry with a mixed inoculum of two arbuscular mycorrhizal fungi: effects on population dynamics of fungal species in roots and consequential plant tolerance to water deficiency. Boyer LR; Brain P; Xu XM; Jeffries P Mycorrhiza; 2015 Apr; 25(3):215-27. PubMed ID: 25186649 [TBL] [Abstract][Full Text] [Related]
14. [Effects of arbuscular mycorrhiza fungi (AMF) on the plant growth, fruit yield, and fruit quality of cucumber under salt stress]. Han B; Guo SR; He CX; Yan Y; Yu XC Ying Yong Sheng Tai Xue Bao; 2012 Jan; 23(1):154-8. PubMed ID: 22489493 [TBL] [Abstract][Full Text] [Related]
15. Arbuscular mycorrhizal symbiosis elicits proteome responses opposite of P-starvation in SO4 grapevine rootstock upon root colonisation with two Glomus species. Cangahuala-Inocente GC; Da Silva MF; Johnson JM; Manga A; van Tuinen D; Henry C; Lovato PE; Dumas-Gaudot E Mycorrhiza; 2011 Aug; 21(6):473-493. PubMed ID: 21210159 [TBL] [Abstract][Full Text] [Related]
16. Co-inoculation of Lolium perenne with Funneliformis mosseae and the dark septate endophyte Cadophora sp. in a trace element-polluted soil. Berthelot C; Blaudez D; Beguiristain T; Chalot M; Leyval C Mycorrhiza; 2018 Apr; 28(3):301-314. PubMed ID: 29502186 [TBL] [Abstract][Full Text] [Related]
17. Establishment and effectiveness of inoculated arbuscular mycorrhizal fungi in agricultural soils. Köhl L; Lukasiewicz CE; van der Heijden MG Plant Cell Environ; 2016 Jan; 39(1):136-46. PubMed ID: 26147222 [TBL] [Abstract][Full Text] [Related]
18. Phytoprotective effect of arbuscular mycorrhizal fungi species against arsenic toxicity in tropical leguminous species. de Melo RW; Schneider J; de Souza CE; Sousa SC; Guimarães GL; de Souza MF Int J Phytoremediation; 2014; 16(7-12):840-58. PubMed ID: 24933888 [TBL] [Abstract][Full Text] [Related]
19. Arbuscular mycorrhizal fungi alter microbiome structure of rhizosphere soil to enhance maize tolerance to La. Hao L; Zhang Z; Hao B; Diao F; Zhang J; Bao Z; Guo W Ecotoxicol Environ Saf; 2021 Apr; 212():111996. PubMed ID: 33545409 [TBL] [Abstract][Full Text] [Related]
20. Arbuscular mycorrhizal fungi enhance the copper tolerance of Tagetes patula through the sorption and barrier mechanisms of intraradical hyphae. Zhou X; Fu L; Xia Y; Zheng L; Chen C; Shen Z; Chen Y Metallomics; 2017 Jul; 9(7):936-948. PubMed ID: 28613326 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]