These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 25160706)

  • 41. Enhancement of precise hand movement by transcranial direct current stimulation.
    Matsuo A; Maeoka H; Hiyamizu M; Shomoto K; Morioka S; Seki K
    Neuroreport; 2011 Jan; 22(2):78-82. PubMed ID: 21150805
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Combining reward and M1 transcranial direct current stimulation enhances the retention of newly learnt sensorimotor mappings.
    Spampinato DA; Satar Z; Rothwell JC
    Brain Stimul; 2019; 12(5):1205-1212. PubMed ID: 31133478
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Individual differences in TMS sensitivity influence the efficacy of tDCS in facilitating sensorimotor adaptation.
    Labruna L; Stark-Inbar A; Breska A; Dabit M; Vanderschelden B; Nitsche MA; Ivry RB
    Brain Stimul; 2019; 12(4):992-1000. PubMed ID: 30930208
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Excitability modulation of the motor system induced by transcranial direct current stimulation: a multimodal approach.
    Pellicciari MC; Brignani D; Miniussi C
    Neuroimage; 2013 Dec; 83():569-80. PubMed ID: 23845429
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Acquisition and consolidation of implicit motor learning with physical and mental practice across multiple days of anodal tDCS.
    Debarnot U; Neveu R; Samaha Y; Saruco E; Macintyre T; Guillot A
    Neurobiol Learn Mem; 2019 Oct; 164():107062. PubMed ID: 31377178
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Anodal transcranial direct current stimulation enhances procedural consolidation.
    Tecchio F; Zappasodi F; Assenza G; Tombini M; Vollaro S; Barbati G; Rossini PM
    J Neurophysiol; 2010 Aug; 104(2):1134-40. PubMed ID: 20538777
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multisession Anodal tDCS Protocol Improves Motor System Function in an Aging Population.
    Dumel G; Bourassa ME; Desjardins M; Voarino N; Charlebois-Plante C; Doyon J; De Beaumont L
    Neural Plast; 2016; 2016():5961362. PubMed ID: 26881118
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Noninvasive neurostimulation of left ventral motor cortex enhances sensorimotor adaptation in speech production.
    Scott TL; Haenchen L; Daliri A; Chartove J; Guenther FH; Perrachione TK
    Brain Lang; 2020 Oct; 209():104840. PubMed ID: 32738502
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Anodal tDCS applied during strength training enhances motor cortical plasticity.
    Hendy AM; Kidgell DJ
    Med Sci Sports Exerc; 2013 Sep; 45(9):1721-9. PubMed ID: 23470308
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Beyond the silence: bilateral somatosensory stimulation enhances skilled movement quality and neural density in intact behaving rats.
    Faraji J; Gomez-Palacio-Schjetnan A; Luczak A; Metz GA
    Behav Brain Res; 2013 Sep; 253():78-89. PubMed ID: 23871611
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Targeted tDCS selectively improves motor adaptation with the proximal and distal upper limb.
    Weightman M; Brittain JS; Punt D; Miall RC; Jenkinson N
    Brain Stimul; 2020; 13(3):707-716. PubMed ID: 32289702
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Formation of model-free motor memories during motor adaptation depends on perturbation schedule.
    Orban de Xivry JJ; Lefèvre P
    J Neurophysiol; 2015 Apr; 113(7):2733-41. PubMed ID: 25673736
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Improving consolidation by applying anodal transcranial direct current stimulation at primary motor cortex during repetitive practice.
    Kim T; Kim H; Wright DL
    Neurobiol Learn Mem; 2021 Feb; 178():107365. PubMed ID: 33348047
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Neural correlates of the contextual interference effect in motor learning: a transcranial magnetic stimulation investigation.
    Lin CH; Winstein CJ; Fisher BE; Wu AD
    J Mot Behav; 2010; 42(4):223-32. PubMed ID: 20570818
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Primary motor cortex activation by transcranial direct current stimulation in the human brain.
    Kwon YH; Ko MH; Ahn SH; Kim YH; Song JC; Lee CH; Chang MC; Jang SH
    Neurosci Lett; 2008 Apr; 435(1):56-9. PubMed ID: 18325666
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Disruption of M1 Activity during Performance Plateau Impairs Consolidation of Motor Memories.
    Hamel R; Trempe M; Bernier PM
    J Neurosci; 2017 Sep; 37(38):9197-9206. PubMed ID: 28821677
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Motor cortex-induced plasticity by noninvasive brain stimulation: a comparison between transcranial direct current stimulation and transcranial magnetic stimulation.
    Simis M; Adeyemo BO; Medeiros LF; Miraval F; Gagliardi RJ; Fregni F
    Neuroreport; 2013 Dec; 24(17):973-5. PubMed ID: 24100412
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Direct and indirect effects of cathodal cerebellar TDCS on visuomotor adaptation of hand and arm movements.
    Weightman M; Brittain JS; Miall RC; Jenkinson N
    Sci Rep; 2021 Feb; 11(1):4464. PubMed ID: 33627717
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effect of transcranial direct current stimulation on the cortical activation by motor task in the human brain: an fMRI study.
    Jang SH; Ahn SH; Byun WM; Kim CS; Lee MY; Kwon YH
    Neurosci Lett; 2009 Aug; 460(2):117-20. PubMed ID: 19450657
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Primary motor cortex crucial for action prediction: A tDCS study.
    Paracampo R; Montemurro M; de Vega M; Avenanti A
    Cortex; 2018 Dec; 109():287-302. PubMed ID: 30408642
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.