BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

437 related articles for article (PubMed ID: 25161184)

  • 1. Three-dimensional printing in cardiac surgery and interventional cardiology: a single-centre experience.
    Schmauss D; Haeberle S; Hagl C; Sodian R
    Eur J Cardiothorac Surg; 2015 Jun; 47(6):1044-52. PubMed ID: 25161184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilisation of three-dimensional printed heart models for operative planning of complex congenital heart defects.
    Olejník P; Nosal M; Havran T; Furdova A; Cizmar M; Slabej M; Thurzo A; Vitovic P; Klvac M; Acel T; Masura J
    Kardiol Pol; 2017; 75(5):495-501. PubMed ID: 28281732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid 3D printing: a game-changer in personalized cardiac medicine?
    Kurup HK; Samuel BP; Vettukattil JJ
    Expert Rev Cardiovasc Ther; 2015 Dec; 13(12):1281-4. PubMed ID: 26465262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional printing in cardiology: Current applications and future challenges.
    Luo H; Meyer-Szary J; Wang Z; Sabiniewicz R; Liu Y
    Cardiol J; 2017; 24(4):436-444. PubMed ID: 28541602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiovascular Three-Dimensional Printing in Non-Congenital Percutaneous Interventions.
    Oliveira-Santos M; Oliveira-Santos E; Gonçalves L; Silva Marques J
    Heart Lung Circ; 2019 Oct; 28(10):1525-1534. PubMed ID: 31176626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-Dimensional Printing Applications in Percutaneous Structural Heart Interventions.
    Harb SC; Rodriguez LL; Vukicevic M; Kapadia SR; Little SH
    Circ Cardiovasc Imaging; 2019 Oct; 12(10):e009014. PubMed ID: 31594408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-Dimensional Printing for Planning of Structural Heart Interventions.
    Wang DD; Gheewala N; Shah R; Levin D; Myers E; Rollet M; O'Neill WW
    Interv Cardiol Clin; 2018 Jul; 7(3):415-423. PubMed ID: 29983152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-Dimensional Modeling May Improve Surgical Education and Clinical Practice.
    Jones DB; Sung R; Weinberg C; Korelitz T; Andrews R
    Surg Innov; 2016 Apr; 23(2):189-95. PubMed ID: 26423911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional patient-specific cardiac model for surgical planning in Nikaidoh procedure.
    Valverde I; Gomez G; Gonzalez A; Suarez-Mejias C; Adsuar A; Coserria JF; Uribe S; Gomez-Cia T; Hosseinpour AR
    Cardiol Young; 2015 Apr; 25(4):698-704. PubMed ID: 24809416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional printing to facilitate anatomic study, device development, simulation, and planning in thoracic surgery.
    Kurenov SN; Ionita C; Sammons D; Demmy TL
    J Thorac Cardiovasc Surg; 2015 Apr; 149(4):973-9.e1. PubMed ID: 25659851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional printing and virtual surgery for congenital heart procedural planning.
    Moore RA; Riggs KW; Kourtidou S; Schneider K; Szugye N; Troja W; D'Souza G; Rattan M; Bryant R; Taylor MD; Morales DLS
    Birth Defects Res; 2018 Aug; 110(13):1082-1090. PubMed ID: 30079634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D printing for preoperative planning and surgical training: a review.
    Ganguli A; Pagan-Diaz GJ; Grant L; Cvetkovic C; Bramlet M; Vozenilek J; Kesavadas T; Bashir R
    Biomed Microdevices; 2018 Aug; 20(3):65. PubMed ID: 30078059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Medical three-dimensional printing opens up new opportunities in cardiology and cardiac surgery.
    Bartel T; Rivard A; Jimenez A; Mestres CA; Müller S
    Eur Heart J; 2018 Apr; 39(15):1246-1254. PubMed ID: 28329105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Living the heart in three dimensions: applications of 3D printing in CHD.
    Forte MNV; Hussain T; Roest A; Gomez G; Jongbloed M; Simpson J; Pushparajah K; Byrne N; Valverde I
    Cardiol Young; 2019 Jun; 29(6):733-743. PubMed ID: 31198120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Three-dimensional virtual and printed models improve preoperative planning and promote patient-safety in complex congenital and pediatric cardiac surgery].
    Király L
    Orv Hetil; 2019 May; 160(19):747-755. PubMed ID: 31055963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility of in-house rapid prototyping of cardiovascular three-dimensional models for planning and training non-standard interventional procedures.
    Meyer-Szary J; Woźniak-Mielczarek L; Sabiniewicz D; Sabiniewicz R
    Cardiol J; 2019; 26(6):790-792. PubMed ID: 31970736
    [No Abstract]   [Full Text] [Related]  

  • 17. 3D Printing in Complex Congenital Heart Disease: Across a Spectrum of Age, Pathology, and Imaging Techniques.
    Anwar S; Singh GK; Varughese J; Nguyen H; Billadello JJ; Sheybani EF; Woodard PK; Manning P; Eghtesady P
    JACC Cardiovasc Imaging; 2017 Aug; 10(8):953-956. PubMed ID: 27450874
    [No Abstract]   [Full Text] [Related]  

  • 18. Using 3D Printing to Create Personalized Brain Models for Neurosurgical Training and Preoperative Planning.
    Ploch CC; Mansi CSSA; Jayamohan J; Kuhl E
    World Neurosurg; 2016 Jun; 90():668-674. PubMed ID: 26924117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First printed 3D heart model based on cardiac magnetic resonance imaging data in Slovakia.
    Olejnik P; Juskanic D; Patrovic L; Halaj M
    Bratisl Lek Listy; 2018; 119(12):781-784. PubMed ID: 30686018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using 3D Physical Modeling to Plan Surgical Corrections of Complex Congenital Heart Defects.
    Vodiskar J; Kütting M; Steinseifer U; Vazquez-Jimenez JF; Sonntag SJ
    Thorac Cardiovasc Surg; 2017 Jan; 65(1):31-35. PubMed ID: 27177266
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 22.