These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. A comparative study of k-spectrum-based error correction methods for next-generation sequencing data analysis. Akogwu I; Wang N; Zhang C; Gong P Hum Genomics; 2016 Jul; 10 Suppl 2(Suppl 2):20. PubMed ID: 27461106 [TBL] [Abstract][Full Text] [Related]
23. FLAS: fast and high-throughput algorithm for PacBio long-read self-correction. Bao E; Xie F; Song C; Song D Bioinformatics; 2019 Oct; 35(20):3953-3960. PubMed ID: 30895306 [TBL] [Abstract][Full Text] [Related]
25. Trowel: a fast and accurate error correction module for Illumina sequencing reads. Lim EC; Müller J; Hagmann J; Henz SR; Kim ST; Weigel D Bioinformatics; 2014 Nov; 30(22):3264-5. PubMed ID: 25075116 [TBL] [Abstract][Full Text] [Related]
26. BFC: correcting Illumina sequencing errors. Li H Bioinformatics; 2015 Sep; 31(17):2885-7. PubMed ID: 25953801 [TBL] [Abstract][Full Text] [Related]
27. IMSEQ--a fast and error aware approach to immunogenetic sequence analysis. Kuchenbecker L; Nienen M; Hecht J; Neumann AU; Babel N; Reinert K; Robinson PN Bioinformatics; 2015 Sep; 31(18):2963-71. PubMed ID: 25987567 [TBL] [Abstract][Full Text] [Related]
28. QuorUM: An Error Corrector for Illumina Reads. Marçais G; Yorke JA; Zimin A PLoS One; 2015; 10(6):e0130821. PubMed ID: 26083032 [TBL] [Abstract][Full Text] [Related]
29. Error filtering, pair assembly and error correction for next-generation sequencing reads. Edgar RC; Flyvbjerg H Bioinformatics; 2015 Nov; 31(21):3476-82. PubMed ID: 26139637 [TBL] [Abstract][Full Text] [Related]
30. HiTEC: accurate error correction in high-throughput sequencing data. Ilie L; Fazayeli F; Ilie S Bioinformatics; 2011 Feb; 27(3):295-302. PubMed ID: 21115437 [TBL] [Abstract][Full Text] [Related]
31. Correction of sequencing errors in a mixed set of reads. Salmela L Bioinformatics; 2010 May; 26(10):1284-90. PubMed ID: 20378555 [TBL] [Abstract][Full Text] [Related]
32. In search of perfect reads. Pal S; Aluru S BMC Bioinformatics; 2015; 16 Suppl 17(Suppl 17):S7. PubMed ID: 26679555 [TBL] [Abstract][Full Text] [Related]
33. Lambda: the local aligner for massive biological data. Hauswedell H; Singer J; Reinert K Bioinformatics; 2014 Sep; 30(17):i349-55. PubMed ID: 25161219 [TBL] [Abstract][Full Text] [Related]
34. Iterative error correction of long sequencing reads maximizes accuracy and improves contig assembly. Sameith K; Roscito JG; Hiller M Brief Bioinform; 2017 Jan; 18(1):1-8. PubMed ID: 26868358 [TBL] [Abstract][Full Text] [Related]
35. Improving the sensitivity of long read overlap detection using grouped short k-mer matches. Du N; Chen J; Sun Y BMC Genomics; 2019 Apr; 20(Suppl 2):190. PubMed ID: 30967123 [TBL] [Abstract][Full Text] [Related]
36. Repeat-aware modeling and correction of short read errors. Yang X; Aluru S; Dorman KS BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S52. PubMed ID: 21342585 [TBL] [Abstract][Full Text] [Related]
37. OnlineCall: fast online parameter estimation and base calling for illumina's next-generation sequencing. Das S; Vikalo H Bioinformatics; 2012 Jul; 28(13):1677-83. PubMed ID: 22569177 [TBL] [Abstract][Full Text] [Related]
40. NextPolish: a fast and efficient genome polishing tool for long-read assembly. Hu J; Fan J; Sun Z; Liu S Bioinformatics; 2020 Apr; 36(7):2253-2255. PubMed ID: 31778144 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]