BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 25161246)

  • 1. OncodriveROLE classifies cancer driver genes in loss of function and activating mode of action.
    Schroeder MP; Rubio-Perez C; Tamborero D; Gonzalez-Perez A; Lopez-Bigas N
    Bioinformatics; 2014 Sep; 30(17):i549-55. PubMed ID: 25161246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cancer driver gene discovery through an integrative genomics approach in a non-parametric Bayesian framework.
    Yang H; Wei Q; Zhong X; Yang H; Li B
    Bioinformatics; 2017 Feb; 33(4):483-490. PubMed ID: 27797769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Somatic selection distinguishes oncogenes and tumor suppressor genes.
    Chandrashekar P; Ahmadinejad N; Wang J; Sekulic A; Egan JB; Asmann YW; Kumar S; Maley C; Liu L
    Bioinformatics; 2020 Mar; 36(6):1712-1717. PubMed ID: 32176769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning Classification and Structure-Functional Analysis of Cancer Mutations Reveal Unique Dynamic and Network Signatures of Driver Sites in Oncogenes and Tumor Suppressor Genes.
    Agajanian S; Odeyemi O; Bischoff N; Ratra S; Verkhivker GM
    J Chem Inf Model; 2018 Oct; 58(10):2131-2150. PubMed ID: 30253099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Driver gene mutations based clustering of tumors: methods and applications.
    Zhang W; Flemington EK; Zhang K
    Bioinformatics; 2018 Jul; 34(13):i404-i411. PubMed ID: 29950003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of candidate cancer drivers by integrative Epi-DNA and Gene Expression (iEDGE) data analysis.
    Li A; Chapuy B; Varelas X; Sebastiani P; Monti S
    Sci Rep; 2019 Nov; 9(1):16904. PubMed ID: 31729402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oncodrive-CIS: a method to reveal likely driver genes based on the impact of their copy number changes on expression.
    Tamborero D; Lopez-Bigas N; Gonzalez-Perez A
    PLoS One; 2013; 8(2):e55489. PubMed ID: 23408991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistically identifying tumor suppressors and oncogenes from pan-cancer genome-sequencing data.
    Kumar RD; Searleman AC; Swamidass SJ; Griffith OL; Bose R
    Bioinformatics; 2015 Nov; 31(22):3561-8. PubMed ID: 26209800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel missense-mutation-related feature extraction scheme for 'driver' mutation identification.
    Tan H; Bao J; Zhou X
    Bioinformatics; 2012 Nov; 28(22):2948-55. PubMed ID: 23044540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SomInaClust: detection of cancer genes based on somatic mutation patterns of inactivation and clustering.
    Van den Eynden J; Fierro AC; Verbeke LP; Marchal K
    BMC Bioinformatics; 2015 Apr; 16():125. PubMed ID: 25903787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of driver copy number alterations in diverse cancer types and application in drug repositioning.
    Zhou W; Zhao Z; Wang R; Han Y; Wang C; Yang F; Han Y; Liang H; Qi L; Wang C; Guo Z; Gu Y
    Mol Oncol; 2017 Oct; 11(10):1459-1474. PubMed ID: 28719033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovering personalized driver mutation profiles of single samples in cancer by network control strategy.
    Guo WF; Zhang SW; Liu LL; Liu F; Shi QQ; Zhang L; Tang Y; Zeng T; Chen L
    Bioinformatics; 2018 Jun; 34(11):1893-1903. PubMed ID: 29329368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. OncodriveCLUST: exploiting the positional clustering of somatic mutations to identify cancer genes.
    Tamborero D; Gonzalez-Perez A; Lopez-Bigas N
    Bioinformatics; 2013 Sep; 29(18):2238-44. PubMed ID: 23884480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying cancer type specific oncogenes and tumor suppressors using limited size data.
    Pavel AB; Vasile CI
    J Bioinform Comput Biol; 2016 Dec; 14(6):1650031. PubMed ID: 27712196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel ratio-metric features enable the identification of new driver genes across cancer types.
    Sudhakar M; Rengaswamy R; Raman K
    Sci Rep; 2022 Jan; 12(1):5. PubMed ID: 34997044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Driver gene detection through Bayesian network integration of mutation and expression profiles.
    Chen Z; Lu Y; Cao B; Zhang W; Edwards A; Zhang K
    Bioinformatics; 2022 May; 38(10):2781-2790. PubMed ID: 35561191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ContrastRank: a new method for ranking putative cancer driver genes and classification of tumor samples.
    Tian R; Basu MK; Capriotti E
    Bioinformatics; 2014 Sep; 30(17):i572-8. PubMed ID: 25161249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive evaluation of computational methods for predicting cancer driver genes.
    Shi X; Teng H; Shi L; Bi W; Wei W; Mao F; Sun Z
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35037014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HyDRA: gene prioritization via hybrid distance-score rank aggregation.
    Kim M; Farnoud F; Milenkovic O
    Bioinformatics; 2015 Apr; 31(7):1034-43. PubMed ID: 25411330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinguishing between driver and passenger mutations in individual cancer genomes by network enrichment analysis.
    Merid SK; Goranskaya D; Alexeyenko A
    BMC Bioinformatics; 2014 Sep; 15(1):308. PubMed ID: 25236784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.