These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 25161247)

  • 1. Drug susceptibility prediction against a panel of drugs using kernelized Bayesian multitask learning.
    Gönen M; Margolin AA
    Bioinformatics; 2014 Sep; 30(17):i556-63. PubMed ID: 25161247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating gene set analysis and nonlinear predictive modeling of disease phenotypes using a Bayesian multitask formulation.
    Gönen M
    BMC Bioinformatics; 2016 Dec; 17(Suppl 16):0. PubMed ID: 28105911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drug response prediction by inferring pathway-response associations with kernelized Bayesian matrix factorization.
    Ammad-Ud-Din M; Khan SA; Malani D; Murumägi A; Kallioniemi O; Aittokallio T; Kaski S
    Bioinformatics; 2016 Sep; 32(17):i455-i463. PubMed ID: 27587662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling gene-wise dependencies improves the identification of drug response biomarkers in cancer studies.
    Nikolova O; Moser R; Kemp C; Gönen M; Margolin AA
    Bioinformatics; 2017 May; 33(9):1362-1369. PubMed ID: 28082455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization.
    Gönen M
    Bioinformatics; 2012 Sep; 28(18):2304-10. PubMed ID: 22730431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic identification of feature combinations for predicting drug response with Bayesian multi-view multi-task linear regression.
    Ammad-Ud-Din M; Khan SA; Wennerberg K; Aittokallio T
    Bioinformatics; 2017 Jul; 33(14):i359-i368. PubMed ID: 28881998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of anti-cancer drug response by kernelized multi-task learning.
    Tan M
    Artif Intell Med; 2016 Oct; 73():70-77. PubMed ID: 27926382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inferring latent task structure for Multitask Learning by Multiple Kernel Learning.
    Widmer C; Toussaint NC; Altun Y; Rätsch G
    BMC Bioinformatics; 2010 Oct; 11 Suppl 8(Suppl 8):S5. PubMed ID: 21034430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bayesian multitask learning for medicine recommendation based on online patient reviews.
    Cheng Y; Xia Y; Wang X
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37551956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrative and personalized QSAR analysis in cancer by kernelized Bayesian matrix factorization.
    Ammad-ud-din M; Georgii E; Gönen M; Laitinen T; Kallioniemi O; Wennerberg K; Poso A; Kaski S
    J Chem Inf Model; 2014 Aug; 54(8):2347-59. PubMed ID: 25046554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kernelized rank learning for personalized drug recommendation.
    He X; Folkman L; Borgwardt K
    Bioinformatics; 2018 Aug; 34(16):2808-2816. PubMed ID: 29528376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HIV drug resistance prediction with weighted categorical kernel functions.
    Ramon E; Belanche-Muñoz L; Pérez-Enciso M
    BMC Bioinformatics; 2019 Jul; 20(1):410. PubMed ID: 31362714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous prediction of multiple outcomes using revised stacking algorithms.
    Xing L; Lesperance ML; Zhang X
    Bioinformatics; 2020 Jan; 36(1):65-72. PubMed ID: 31263871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting HIV/HCV Coinfection Using a Machine Learning-Based Multiple Quantitative Structure-Activity Relationships (Multiple QSAR) Method.
    Wei Y; Li W; Du T; Hong Z; Lin J
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31336592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multitask multiple kernel learning formulation for discriminating early- and late-stage cancers.
    Rahimi A; Gönen M
    Bioinformatics; 2020 Jun; 36(12):3766-3772. PubMed ID: 32163111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning with multiple pairwise kernels for drug bioactivity prediction.
    Cichonska A; Pahikkala T; Szedmak S; Julkunen H; Airola A; Heinonen M; Aittokallio T; Rousu J
    Bioinformatics; 2018 Jul; 34(13):i509-i518. PubMed ID: 29949975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast and interpretable genomic data analysis using multiple approximate kernel learning.
    Bektaş AB; Ak Ç; Gönen M
    Bioinformatics; 2022 Jun; 38(Suppl 1):i77-i83. PubMed ID: 35758810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Computational Approach for the Prediction of Treatment History and the Effectiveness or Failure of Antiretroviral Therapy.
    Tarasova O; Biziukova N; Kireev D; Lagunin A; Ivanov S; Filimonov D; Poroikov V
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 31979356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DRIMC: an improved drug repositioning approach using Bayesian inductive matrix completion.
    Zhang W; Xu H; Li X; Gao Q; Wang L
    Bioinformatics; 2020 May; 36(9):2839-2847. PubMed ID: 31999326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multilabel classification for exploiting cross-resistance information in HIV-1 drug resistance prediction.
    Heider D; Senge R; Cheng W; Hüllermeier E
    Bioinformatics; 2013 Aug; 29(16):1946-52. PubMed ID: 23793752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.