These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 25161635)

  • 1. Dual learning processes underlying human decision-making in reversal learning tasks: functional significance and evidence from the model fit to human behavior.
    Bai Y; Katahira K; Ohira H
    Front Psychol; 2014; 5():871. PubMed ID: 25161635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separating Probability and Reversal Learning in a Novel Probabilistic Reversal Learning Task for Mice.
    Metha JA; Brian ML; Oberrauch S; Barnes SA; Featherby TJ; Bossaerts P; Murawski C; Hoyer D; Jacobson LH
    Front Behav Neurosci; 2019; 13():270. PubMed ID: 31998088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple memory systems as substrates for multiple decision systems.
    Doll BB; Shohamy D; Daw ND
    Neurobiol Learn Mem; 2015 Jan; 117():4-13. PubMed ID: 24846190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting psychosis across diagnostic boundaries: Behavioral and computational modeling evidence for impaired reinforcement learning in schizophrenia and bipolar disorder with a history of psychosis.
    Strauss GP; Thaler NS; Matveeva TM; Vogel SJ; Sutton GP; Lee BG; Allen DN
    J Abnorm Psychol; 2015 Aug; 124(3):697-708. PubMed ID: 25894442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new computational account of cognitive control over reinforcement-based decision-making: Modeling of a probabilistic learning task.
    Zendehrouh S
    Neural Netw; 2015 Nov; 71():112-23. PubMed ID: 26339919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetric and adaptive reward coding via normalized reinforcement learning.
    Louie K
    PLoS Comput Biol; 2022 Jul; 18(7):e1010350. PubMed ID: 35862443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural Index of Reinforcement Learning Predicts Improved Stimulus-Response Retention under High Working Memory Load.
    Rac-Lubashevsky R; Cremer A; Collins AGE; Frank MJ; Schwabe L
    J Neurosci; 2023 Apr; 43(17):3131-3143. PubMed ID: 36931706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Medial prefrontal cortex and the adaptive regulation of reinforcement learning parameters.
    Khamassi M; Enel P; Dominey PF; Procyk E
    Prog Brain Res; 2013; 202():441-64. PubMed ID: 23317844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing relationships between reinforcement learning and simple behavioral strategies to understand probabilistic reward learning.
    Iyer ES; Kairiss MA; Liu A; Otto AR; Bagot RC
    J Neurosci Methods; 2020 Jul; 341():108777. PubMed ID: 32417532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surprise Acts as a Reducer of Outcome Value in Human Reinforcement Learning.
    Sumiya M; Katahira K
    Front Neurosci; 2020; 14():852. PubMed ID: 33013288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Working Memory Load Strengthens Reward Prediction Errors.
    Collins AGE; Ciullo B; Frank MJ; Badre D
    J Neurosci; 2017 Apr; 37(16):4332-4342. PubMed ID: 28320846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural components underlying behavioral flexibility in human reversal learning.
    Ghahremani DG; Monterosso J; Jentsch JD; Bilder RM; Poldrack RA
    Cereb Cortex; 2010 Aug; 20(8):1843-52. PubMed ID: 19915091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reinforcement learning signals in the human striatum distinguish learners from nonlearners during reward-based decision making.
    Schönberg T; Daw ND; Joel D; O'Doherty JP
    J Neurosci; 2007 Nov; 27(47):12860-7. PubMed ID: 18032658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dorsolateral prefrontal cortex contributes to the impaired behavioral adaptation in alcohol dependence.
    Beylergil SB; Beck A; Deserno L; Lorenz RC; Rapp MA; Schlagenhauf F; Heinz A; Obermayer K
    Neuroimage Clin; 2017; 15():80-94. PubMed ID: 28491495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of value-based decision making behavior by subregions of the rat prefrontal cortex.
    Verharen JPH; den Ouden HEM; Adan RAH; Vanderschuren LJMJ
    Psychopharmacology (Berl); 2020 May; 237(5):1267-1280. PubMed ID: 32025777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reinforcement learning in depression: A review of computational research.
    Chen C; Takahashi T; Nakagawa S; Inoue T; Kusumi I
    Neurosci Biobehav Rev; 2015 Aug; 55():247-67. PubMed ID: 25979140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Cognitive Modeling Approach to Strategy Formation in Dynamic Decision Making.
    Prezenski S; Brechmann A; Wolff S; Russwinkel N
    Front Psychol; 2017; 8():1335. PubMed ID: 28824512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dopamine D3 Receptor Availability Is Associated with Inflexible Decision Making.
    Groman SM; Smith NJ; Petrullli JR; Massi B; Chen L; Ropchan J; Huang Y; Lee D; Morris ED; Taylor JR
    J Neurosci; 2016 Jun; 36(25):6732-41. PubMed ID: 27335404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novelty is not surprise: Human exploratory and adaptive behavior in sequential decision-making.
    Xu HA; Modirshanechi A; Lehmann MP; Gerstner W; Herzog MH
    PLoS Comput Biol; 2021 Jun; 17(6):e1009070. PubMed ID: 34081705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. States versus rewards: dissociable neural prediction error signals underlying model-based and model-free reinforcement learning.
    Gläscher J; Daw N; Dayan P; O'Doherty JP
    Neuron; 2010 May; 66(4):585-95. PubMed ID: 20510862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.