These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 25161846)

  • 1. Nanocavity crossbar arrays for parallel electrochemical sensing on a chip.
    Kätelhön E; Mayer D; Banzet M; Offenhäusser A; Wolfrum B
    Beilstein J Nanotechnol; 2014; 5():1137-43. PubMed ID: 25161846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale Electrochemical Sensor Arrays: Redox Cycling Amplification in Dual-Electrode Systems.
    Wolfrum B; Kätelhön E; Yakushenko A; Krause KJ; Adly N; Hüske M; Rinklin P
    Acc Chem Res; 2016 Sep; 49(9):2031-40. PubMed ID: 27602780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoporous dual-electrodes with millimetre extensions: parallelized fabrication and area effects on redox cycling.
    Hüske M; Offenhäusser A; Wolfrum B
    Phys Chem Chem Phys; 2014 Jun; 16(23):11609-16. PubMed ID: 24806814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A highly sensitive endotoxin sensor based on redox cycling in a nanocavity.
    Ito K; Inoue KY; Ino K; Matsue T; Shiku H
    Analyst; 2019 Jun; 144(11):3659-3667. PubMed ID: 31074478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanocavity redox cycling sensors for the detection of dopamine fluctuations in microfluidic gradients.
    Kätelhön E; Hofmann B; Lemay SG; Zevenbergen MA; Offenhäusser A; Wolfrum B
    Anal Chem; 2010 Oct; 82(20):8502-9. PubMed ID: 20849083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanocavity electrode array for recording from electrogenic cells.
    Hofmann B; Kätelhön E; Schottdorf M; Offenhäusser A; Wolfrum B
    Lab Chip; 2011 Mar; 11(6):1054-8. PubMed ID: 21286648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox cycling in nanoscale-recessed ring-disk electrode arrays for enhanced electrochemical sensitivity.
    Ma C; Contento NM; Gibson LR; Bohn PW
    ACS Nano; 2013 Jun; 7(6):5483-90. PubMed ID: 23691968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of an electrochemical DNA assay by using a 48-electrode array and redox amplification studies by means of scanning electrochemical microscopy.
    Neugebauer S; Zimdars A; Liepold P; Gebala M; Schuhmann W; Hartwich G
    Chembiochem; 2009 May; 10(7):1193-9. PubMed ID: 19353601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single Molecule Nanoelectrochemistry in Electrical Junctions.
    Nichols RJ; Higgins SJ
    Acc Chem Res; 2016 Nov; 49(11):2640-2648. PubMed ID: 27714992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Droplet array on local redox cycling-based electrochemical (LRC-EC) chip device.
    Ino K; Goto T; Kanno Y; Inoue KY; Takahashi Y; Shiku H; Matsue T
    Lab Chip; 2014 Feb; 14(4):787-94. PubMed ID: 24356747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Operational Limits and Failure Mechanisms in All-2D van der Waals Vertical Heterostructure Devices with Long-Lived Persistent Electroluminescence.
    Hou L; Zhang Q; Shautsova V; Warner JH
    ACS Nano; 2020 Nov; 14(11):15533-15543. PubMed ID: 33143420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Addressable electrode array device with IDA electrodes for high-throughput detection.
    Ino K; Saito W; Koide M; Umemura T; Shiku H; Matsue T
    Lab Chip; 2011 Feb; 11(3):385-8. PubMed ID: 21152636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic cells with interdigitated array gold electrodes: Fabrication and electrochemical characterization.
    Daniel D; Gutz IG
    Talanta; 2005 Dec; 68(2):429-36. PubMed ID: 18970340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An addressable microelectrode array for electrochemical detection.
    Lin Z; Takahashi Y; Kitagawa Y; Umemura T; Shiku H; Matsue T
    Anal Chem; 2008 Sep; 80(17):6830-3. PubMed ID: 18665613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid bench-top fabrication of poly(dimethylsiloxane)/polystyrene microfluidic devices incorporating high-surface-area sensing electrodes.
    Sonney S; Shek N; Moran-Mirabal JM
    Biomicrofluidics; 2015 Mar; 9(2):026501. PubMed ID: 25945145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox cycling-based immunoassay for detection of carcinogenic embryonic antigen.
    Lee GY; Park JH; Chang YW; Cho S; Kang MJ; Pyun JC
    Anal Chim Acta; 2017 Jun; 971():33-39. PubMed ID: 28456281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mass fabrication of resistive random access crossbar arrays by step and flash imprint lithography.
    Yun DK; Kim KD; Kim S; Lee JH; Park HH; Jeong JH; Choi YK; Choi DG
    Nanotechnology; 2009 Nov; 20(44):445305. PubMed ID: 19809105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple method to fabricate electrochemical sensor systems with predictable high-redox cycling amplification.
    Straver MG; Odijk M; Olthuis W; van den Berg A
    Lab Chip; 2012 Apr; 12(8):1548-53. PubMed ID: 22361973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Printing "Smart" Inks of Redox-Responsive Organometallic Polymers on Microelectrode Arrays for Molecular Sensing.
    Cirelli M; Hao J; Bor TC; Duvigneau J; Benson N; Akkerman R; Hempenius MA; Vancso GJ
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):37060-37068. PubMed ID: 31525020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigations of redox magnetohydrodynamic fluid flow at microelectrode arrays using microbeads.
    Anderson EC; Weston MC; Fritsch I
    Anal Chem; 2010 Apr; 82(7):2643-51. PubMed ID: 20210341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.