These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 25161867)

  • 1. Short-term exposure of nontumorigenic human bronchial epithelial cells to carcinogenic chromium(VI) compromises their respiratory capacity and alters their bioenergetic signature.
    Cerveira JF; Sánchez-Aragó M; Urbano AM; Cuezva JM
    FEBS Open Bio; 2014; 4():594-601. PubMed ID: 25161867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of fructose-1,6-bisphosphatase induces glycolysis and promotes apoptosis resistance of cancer stem-like cells: an important role in hexavalent chromium-induced carcinogenesis.
    Dai J; Ji Y; Wang W; Kim D; Fai LY; Wang L; Luo J; Zhang Z
    Toxicol Appl Pharmacol; 2017 Sep; 331():164-173. PubMed ID: 28624442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of morphological changes in BEAS-2B human bronchial epithelial cells following chronic sub-cytotoxic and mildly cytotoxic hexavalent chromium exposures.
    Costa AN; Moreno V; Prieto MJ; Urbano AM; Alpoim MC
    Mol Carcinog; 2010 Jun; 49(6):582-91. PubMed ID: 20336777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The intracellular redox stress caused by hexavalent chromium is selective for proteins that have key roles in cell survival and thiol redox control.
    Myers JM; Antholine WE; Myers CR
    Toxicology; 2011 Mar; 281(1-3):37-47. PubMed ID: 21237240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constitutive Activation of NAD-Dependent Sirtuin 3 Plays an Important Role in Tumorigenesis of Chromium(VI)-Transformed Cells.
    Clementino M; Kim D; Zhang Z
    Toxicol Sci; 2019 May; 169(1):224-234. PubMed ID: 30715550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Luteolin inhibits Cr(VI)-induced malignant cell transformation of human lung epithelial cells by targeting ROS mediated multiple cell signaling pathways.
    Pratheeshkumar P; Son YO; Divya SP; Roy RV; Hitron JA; Wang L; Kim D; Dai J; Asha P; Zhang Z; Wang Y; Shi X
    Toxicol Appl Pharmacol; 2014 Dec; 281(2):230-41. PubMed ID: 25448439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NADPH oxidase activation is required in reactive oxygen species generation and cell transformation induced by hexavalent chromium.
    Wang X; Son YO; Chang Q; Sun L; Hitron JA; Budhraja A; Zhang Z; Ke Z; Chen F; Luo J; Shi X
    Toxicol Sci; 2011 Oct; 123(2):399-410. PubMed ID: 21742780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased Lipogenesis Is Important for Hexavalent Chromium-Transformed Lung Cells and Xenograft Tumor Growth.
    Wise JTF; Kondo K
    Int J Mol Sci; 2023 Dec; 24(23):. PubMed ID: 38069382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carcinogenicity of chromium and chemoprevention: a brief update.
    Wang Y; Su H; Gu Y; Song X; Zhao J
    Onco Targets Ther; 2017; 10():4065-4079. PubMed ID: 28860815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromium(VI) interaction with plant and animal mitochondrial bioenergetics: a comparative study.
    Fernandes MA; Santos MS; Alpoim MC; Madeira VM; Vicente JA
    J Biochem Mol Toxicol; 2002; 16(2):53-63. PubMed ID: 11979422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of the SEMA4B gene on hexavalent chromium [Cr(VI)]-induced malignant transformation of human bronchial epithelial cells.
    Qin Y; Xu H; Xi Y; Feng L; Chen J; Xu B; Dong X; Li Y; Jiang Z; Lou J
    Toxicol Res (Camb); 2024 Apr; 13(2):tfae030. PubMed ID: 38464415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of hexavalent chromium on mammalian cell bioenergetics: phenotypic changes, molecular basis and potential relevance to chromate-induced lung cancer.
    Abreu PL; Ferreira LM; Alpoim MC; Urbano AM
    Biometals; 2014 Jun; 27(3):409-43. PubMed ID: 24664226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of hexavalent chromium on thioredoxin reductase and peroxiredoxins in human bronchial epithelial cells.
    Myers JM; Myers CR
    Free Radic Biol Med; 2009 Nov; 47(10):1477-85. PubMed ID: 19703554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxic effects of Cr(VI) and Cr(III) on energy metabolism of heterotrophic Euglena gracilis.
    Jasso-Chávez R; Pacheco-Rosales A; Lira-Silva E; Gallardo-Pérez JC; García N; Moreno-Sánchez R
    Aquat Toxicol; 2010 Nov; 100(4):329-38. PubMed ID: 20851473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigations on the nephrotoxicity and hepatotoxicity of trivalent and hexavalent chromium compounds.
    Dartsch PC; Hildenbrand S; Kimmel R; Schmahl FW
    Int Arch Occup Environ Health; 1998 Sep; 71 Suppl():S40-5. PubMed ID: 9827879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hexavalent chromium causes the oxidation of thioredoxin in human bronchial epithelial cells.
    Myers JM; Antholine WE; Myers CR
    Toxicology; 2008 Apr; 246(2-3):222-33. PubMed ID: 18328613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exposure to low levels of hexavalent chromium: target doses and comparative effects on two human pulmonary cell lines.
    Caglieri A; Goldoni M; De Palma G; Mozzoni P; Gemma S; Vichi S; Testai E; Panico F; Corradi M; Tagliaferri S; Costa LG
    Acta Biomed; 2008; 79 Suppl 1():104-15. PubMed ID: 18924316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HMGA2 mediates Cr (VI)-induced metabolic reprogramming through binding to mitochondrial D-Loop region.
    Bao S; Zhang C; Luo S; Jiang L; Li Q; Kong Y; Cao J
    Ecotoxicol Environ Saf; 2022 Oct; 244():114085. PubMed ID: 36116352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hexavalent chromium induces energy metabolism disturbance and p53-dependent cell cycle arrest via reactive oxygen species in L-02 hepatocytes.
    Xiao F; Feng X; Zeng M; Guan L; Hu Q; Zhong C
    Mol Cell Biochem; 2012 Dec; 371(1-2):65-76. PubMed ID: 22886373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constitutive activation of epidermal growth factor receptor promotes tumorigenesis of Cr(VI)-transformed cells through decreased reactive oxygen species and apoptosis resistance development.
    Kim D; Dai J; Fai LY; Yao H; Son YO; Wang L; Pratheeshkumar P; Kondo K; Shi X; Zhang Z
    J Biol Chem; 2015 Jan; 290(4):2213-24. PubMed ID: 25477514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.