BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 25162009)

  • 1. Improved variant calling accuracy by merging replicates in whole-exome sequencing studies.
    Zhang Y; Li B; Li C; Cai Q; Zheng W; Long J
    Biomed Res Int; 2014; 2014():319534. PubMed ID: 25162009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variant callers for next-generation sequencing data: a comparison study.
    Liu X; Han S; Wang Z; Gelernter J; Yang BZ
    PLoS One; 2013; 8(9):e75619. PubMed ID: 24086590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ionizing Radiation Alters the Transition/Transversion Ratio in the Exome of Human Gingiva Fibroblasts.
    Nath N; Hagenau L; Weiss S; Tzvetkova A; Jensen LR; Kaderali L; Port M; Scherthan H; Kuss AW
    Health Phys; 2020 Jul; 119(1):109-117. PubMed ID: 32483046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective filtering strategies to improve data quality from population-based whole exome sequencing studies.
    Carson AR; Smith EN; Matsui H; Brækkan SK; Jepsen K; Hansen JB; Frazer KA
    BMC Bioinformatics; 2014 May; 15():125. PubMed ID: 24884706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison and evaluation of two exome capture kits and sequencing platforms for variant calling.
    Zhang G; Wang J; Yang J; Li W; Deng Y; Li J; Huang J; Hu S; Zhang B
    BMC Genomics; 2015 Aug; 16(1):581. PubMed ID: 26242175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing single nucleotide variant detection and genotype calling on whole-genome sequenced individuals.
    Cheng AY; Teo YY; Ong RT
    Bioinformatics; 2014 Jun; 30(12):1707-13. PubMed ID: 24558117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced whole exome sequencing by higher DNA insert lengths.
    Pommerenke C; Geffers R; Bunk B; Bhuju S; Eberth S; Drexler HG; Quentmeier H
    BMC Genomics; 2016 May; 17():399. PubMed ID: 27225215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance assessment of variant calling pipelines using human whole exome sequencing and simulated data.
    Kumaran M; Subramanian U; Devarajan B
    BMC Bioinformatics; 2019 Jun; 20(1):342. PubMed ID: 31208315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An efficient and tunable parameter to improve variant calling for whole genome and exome sequencing data.
    Ahn YJ; Markkandan K; Baek IP; Mun S; Lee W; Kim HS; Han K
    Genes Genomics; 2018 Jan; 40(1):39-47. PubMed ID: 29892897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Consensus Genotyper for Exome Sequencing (CGES): improving the quality of exome variant genotypes.
    Trubetskoy V; Rodriguez A; Dave U; Campbell N; Crawford EL; Cook EH; Sutcliffe JS; Foster I; Madduri R; Cox NJ; Davis LK
    Bioinformatics; 2015 Jan; 31(2):187-93. PubMed ID: 25270638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation and assessment of variant calling pipelines for next-generation sequencing.
    Pirooznia M; Kramer M; Parla J; Goes FS; Potash JB; McCombie WR; Zandi PP
    Hum Genomics; 2014 Jul; 8(1):14. PubMed ID: 25078893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of post-alignment processing in variant discovery from whole exome data.
    Tian S; Yan H; Kalmbach M; Slager SL
    BMC Bioinformatics; 2016 Oct; 17(1):403. PubMed ID: 27716037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytical validation of whole exome and whole genome sequencing for clinical applications.
    Linderman MD; Brandt T; Edelmann L; Jabado O; Kasai Y; Kornreich R; Mahajan M; Shah H; Kasarskis A; Schadt EE
    BMC Med Genomics; 2014 Apr; 7():20. PubMed ID: 24758382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. OTG-snpcaller: an optimized pipeline based on TMAP and GATK for SNP calling from ion torrent data.
    Zhu P; He L; Li Y; Huang W; Xi F; Lin L; Zhi Q; Zhang W; Tang YT; Geng C; Lu Z; Xu X
    PLoS One; 2014; 9(5):e97507. PubMed ID: 24824529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal sequencing depth design for whole genome re-sequencing in pigs.
    Jiang Y; Jiang Y; Wang S; Zhang Q; Ding X
    BMC Bioinformatics; 2019 Nov; 20(1):556. PubMed ID: 31703550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PhredEM: a phred-score-informed genotype-calling approach for next-generation sequencing studies.
    Liao P; Satten GA; Hu YJ
    Genet Epidemiol; 2017 Jul; 41(5):375-387. PubMed ID: 28560825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimized detection of insertions/deletions (INDELs) in whole-exome sequencing data.
    Kim BY; Park JH; Jo HY; Koo SK; Park MH
    PLoS One; 2017; 12(8):e0182272. PubMed ID: 28792971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of whole genome amplification techniques for human single cell exome sequencing.
    Borgström E; Paterlini M; Mold JE; Frisen J; Lundeberg J
    PLoS One; 2017; 12(2):e0171566. PubMed ID: 28207771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Archived neonatal dried blood spot samples can be used for accurate whole genome and exome-targeted next-generation sequencing.
    Hollegaard MV; Grauholm J; Nielsen R; Grove J; Mandrup S; Hougaard DM
    Mol Genet Metab; 2013; 110(1-2):65-72. PubMed ID: 23830478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GATK hard filtering: tunable parameters to improve variant calling for next generation sequencing targeted gene panel data.
    De Summa S; Malerba G; Pinto R; Mori A; Mijatovic V; Tommasi S
    BMC Bioinformatics; 2017 Mar; 18(Suppl 5):119. PubMed ID: 28361668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.