These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 25162063)

  • 1. Noncontact microembossing technology for fabricating thermoplastic optical polymer microlens array sheets.
    Chang X; Xie D; Ge X; Li H
    ScientificWorldJournal; 2014; 2014():736562. PubMed ID: 25162063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic device fabrication by thermoplastic hot-embossing.
    Yang S; Devoe DL
    Methods Mol Biol; 2013; 949():115-23. PubMed ID: 23329439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid fabrication of thermoplastic polymer refractive microlens array using contactless hot embossing technology.
    Xie D; Chang X; Shu X; Wang Y; Ding H; Liu Y
    Opt Express; 2015 Feb; 23(4):5154-66. PubMed ID: 25836549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of large curvature microlens array using confined laser swelling method.
    Shao J; Ding Y; Zhai H; Hu B; Li X; Tian H
    Opt Lett; 2013 Aug; 38(16):3044-6. PubMed ID: 24104643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of plastic microlens arrays using hybrid extrusion rolling embossing with a metallic cylinder mold fabricated using dry film resist.
    Jiang LT; Huang TC; Chiu CR; Chang CY; Yang SY
    Opt Express; 2007 Sep; 15(19):12088-94. PubMed ID: 19547573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of flexible microlens array through vapor-induced room temperature dewetting on plasma treated Parylene-C.
    Xiaopeng Bi ; Wen Li
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2085-8. PubMed ID: 25570395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supercritical Fluid-Driven Polymer Phase Separation for Microlens with Tunable Dimension and Curvature.
    Yang Y; Huang X; Zhang X; Jiang F; Zhang X; Wang Y
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8849-58. PubMed ID: 26999714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of large area resin microlens arrays using gas-assisted ultraviolet embossing.
    Huang PH; Huang TC; Sun YT; Yang SY
    Opt Express; 2008 Mar; 16(5):3041-8. PubMed ID: 18542390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variable focus convex microlens array on K9 glass substrate based on femtosecond laser processing and hot embossing lithography.
    Chen Z; Yuan H; Wu P; Zhang W; Juodkazis S; Huang H; Cao X
    Opt Lett; 2022 Jan; 47(1):22-25. PubMed ID: 34951873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imprint Molding of a Microfluidic Optical Cell on Thermoplastics with Reduced Surface Roughness for the Detection of Copper Ions.
    Wu J; Lee NY
    Anal Sci; 2016; 32(1):85-92. PubMed ID: 26753711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of micro protrusive lens arrays atop poly(methyl methacrylate).
    Zhao Y; Wang CC; Huang WM; Purnawali H; An L
    Opt Express; 2011 Dec; 19(27):26000-5. PubMed ID: 22274188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of double-side ultrasonic embossing for fabrication of microstructures on thermoplastic polymer substrates.
    Luo Y; Yan X; Qi N; Wang X; Wang L
    PLoS One; 2013; 8(4):e61647. PubMed ID: 23630605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a 3D artificial compound eye.
    Li L; Yi AY
    Opt Express; 2010 Aug; 18(17):18125-37. PubMed ID: 20721201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PMMA Solution Assisted Room Temperature Bonding for PMMA⁻PC Hybrid Devices.
    Song IH; Park T
    Micromachines (Basel); 2017 Sep; 8(9):. PubMed ID: 30400474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of long-focal-length plano-convex microlens array by combining the micro-milling and injection molding processes.
    Chen L; Kirchberg S; Jiang BY; Xie L; Jia YL; Sun LL
    Appl Opt; 2014 Nov; 53(31):7369-80. PubMed ID: 25402902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A spring-driven press device for hot embossing and thermal bonding of PMMA microfluidic chips.
    Chen Z; Zhang L; Chen G
    Electrophoresis; 2010 Aug; 31(15):2512-9. PubMed ID: 20665912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of polymer microlens arrays using capillary forming with a soft mold of micro-holes array and UV-curable polymer.
    Chang CY; Yang SY; Huang LS; Hsieh KH
    Opt Express; 2006 Jun; 14(13):6253-8. PubMed ID: 19516797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A high numerical aperture, polymer-based, planar microlens array.
    Tripathi A; Chokshi TV; Chronis N
    Opt Express; 2009 Oct; 17(22):19908-18. PubMed ID: 19997214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, fabrication, and characterization of thermoplastic microlenses for fiber-optic probe imaging.
    Shinoj VK; Murukeshan VM; Tor SB; Loh NH; Lye SW
    Appl Opt; 2014 Feb; 53(6):1083-8. PubMed ID: 24663305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of concave microlens arrays using controllable dielectrophoretic force in template holes.
    Li X; Ding Y; Shao J; Liu H; Tian H
    Opt Lett; 2011 Oct; 36(20):4083-5. PubMed ID: 22002393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.