These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 25162146)

  • 61. Contributions of exercise-induced fatigue versus intertrial tendon vibration on visual-proprioceptive weighting for goal-directed movement.
    Manzone DM; Tremblay L
    J Neurophysiol; 2020 Sep; 124(3):802-814. PubMed ID: 32755335
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [Vibration after effect during human walking].
    Courtine G; Pozzo T; Schieppati M
    J Soc Biol; 2001; 195(4):443-6. PubMed ID: 11938563
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Influence of the amount of body weight support on lower limb joints' kinematics during treadmill walking at different gait speeds: Reference data on healthy adults to define trajectories for robot assistance.
    Ferrarin M; Rabuffetti M; Geda E; Sirolli S; Marzegan A; Bruno V; Sacco K
    Proc Inst Mech Eng H; 2018 Jun; 232(6):619-627. PubMed ID: 29890931
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Split-belt adaptation and gait symmetry in transtibial amputees walking with a hybrid EMG controlled ankle-foot prosthesis.
    Kannape OA; Herr HM
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5469-5472. PubMed ID: 28269495
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Adaptation mechanism of interlimb coordination in human split-belt treadmill walking through learning of foot contact timing: a robotics study.
    Fujiki S; Aoi S; Funato T; Tomita N; Senda K; Tsuchiya K
    J R Soc Interface; 2015 Sep; 12(110):0542. PubMed ID: 26289658
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Baseline skin information from the foot dorsum is used to control lower limb kinematics during level walking.
    Howe EE; Toth AJ; Vallis LA; Bent LR
    Exp Brain Res; 2015 Aug; 233(8):2477-87. PubMed ID: 26019009
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Habituation to treadmill walking.
    Van de Putte M; Hagemeister N; St-Onge N; Parent G; de Guise JA
    Biomed Mater Eng; 2006; 16(1):43-52. PubMed ID: 16410643
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Biomechanics of overground vs. treadmill walking in healthy individuals.
    Lee SJ; Hidler J
    J Appl Physiol (1985); 2008 Mar; 104(3):747-55. PubMed ID: 18048582
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Mode-dependent control of human walking and running as revealed by split-belt locomotor adaptation.
    Ogawa T; Kawashima N; Obata H; Kanosue K; Nakazawa K
    J Exp Biol; 2015 Oct; 218(Pt 20):3192-8. PubMed ID: 26276863
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Novel Kinetic Strategies Adopted in Asymmetric Split-Belt Treadmill Walking.
    Hinkel-Lipsker JW; Hahn ME
    J Mot Behav; 2016; 48(3):209-17. PubMed ID: 26359780
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Spatial and temporal asymmetries in gait predict split-belt adaptation behavior in stroke.
    Malone LA; Bastian AJ
    Neurorehabil Neural Repair; 2014; 28(3):230-40. PubMed ID: 24243917
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Stride length asymmetry in split-belt locomotion.
    Hoogkamer W; Bruijn SM; Duysens J
    Gait Posture; 2014; 39(1):652-4. PubMed ID: 24041467
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Continuous, bilateral Achilles' tendon vibration is not detrimental to human walk.
    Courtine G; Pozzo T; Lucas B; Schieppati M
    Brain Res Bull; 2001 May; 55(1):107-15. PubMed ID: 11427345
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The influence of hip strength on lower-limb, pelvis, and trunk kinematics and coordination patterns during walking and hopping in healthy women.
    Smith JA; Popovich JM; Kulig K
    J Orthop Sports Phys Ther; 2014 Jul; 44(7):525-31. PubMed ID: 24816500
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Adaptational and learning processes during human split-belt locomotion: interaction between central mechanisms and afferent input.
    Prokop T; Berger W; Zijlstra W; Dietz V
    Exp Brain Res; 1995; 106(3):449-56. PubMed ID: 8983988
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Adjusting gait step-by-step: Brain activation during split-belt treadmill walking.
    Hinton DC; Thiel A; Soucy JP; Bouyer L; Paquette C
    Neuroimage; 2019 Nov; 202():116095. PubMed ID: 31430533
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Spatiotemporal characteristics of locomotor adaptation of walking with two handheld poles.
    Obata H; Ogawa T; Yokoyama H; Kaneko N; Nakazawa K
    Exp Brain Res; 2020 Dec; 238(12):2973-2982. PubMed ID: 33074403
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A single bout of resistance exercise does not affect nonlinear dynamics of lower extremity kinematics during treadmill walking.
    Nessler JA; Huynh H; McDougal M
    Gait Posture; 2011 Jun; 34(2):285-7. PubMed ID: 21570292
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Changes in relative work of the lower extremity joints and distal foot with walking speed.
    Ebrahimi A; Goldberg SR; Stanhope SJ
    J Biomech; 2017 Jun; 58():212-216. PubMed ID: 28483145
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Interlimb coordination during locomotion: what can be adapted and stored?
    Reisman DS; Block HJ; Bastian AJ
    J Neurophysiol; 2005 Oct; 94(4):2403-15. PubMed ID: 15958603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.